Goto

Collaborating Authors

 Muralidharan, Saurav


MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are distinguished by their massive parameter counts, which typically result in significant redundancy. This work introduces MaskLLM, a learnable pruning method that establishes Semi-structured (or ``N:M'') Sparsity in LLMs, aimed at reducing computational overhead during inference. Instead of developing a new importance criterion, MaskLLM explicitly models N:M patterns as a learnable distribution through Gumbel Softmax sampling. This approach facilitates end-to-end training on large-scale datasets and offers two notable advantages: 1) High-quality Masks - our method effectively scales to large datasets and learns accurate masks; 2) Transferability - the probabilistic modeling of mask distribution enables the transfer learning of sparsity across domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs, including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to 15B parameters, and our empirical results show substantial improvements over state-of-the-art methods. For instance, leading approaches achieve a perplexity (PPL) of 10 or greater on Wikitext compared to the dense model's 5.12 PPL, but MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks with frozen weights. Furthermore, MaskLLM's learnable nature allows customized masks for lossless application of 2:4 sparsity to downstream tasks or domains. Code is available at https://github.com/NVlabs/MaskLLM.


EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation

arXiv.org Artificial Intelligence

Although Large Language Models (LLMs) exhibit superior performance across diverse applications, their empirical deployment remains challenging due to their associated considerable model size and high inference costs. To mitigate these emerging challenges, model compression research such as post-training compression (Ashkboos et al., 2024; Ma et al., 2023) and compression-aware training (Alvarez & Salzmann, 2017; Lym et al., 2019; Liu et al., 2024, 2023c) has been extensively explored to reduce the computational resource demands of serving LLMs (Zhu et al., 2023). However, most existing methods either incur significant accuracy degradation compared to uncompressed models or have high training time. Additionally, their flexibility is often limited by a discrete set of compression formats (e.g., 2:4 sparsity, 3/4-bit quantization), making it challenging to meet the diverse capacity and efficiency requirements of different users. To overcome the above flexibility limitation, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users, such as tasks, compression ratios, etc. Rather than focusing solely on producing compressed models with minimal performance degradation, by incorporating these residual paths, the compensated model gains greater flexibility in adjusting overall capacity, without being constrained by specific compression formats.


Flextron: Many-in-One Flexible Large Language Model

arXiv.org Artificial Intelligence

Training modern LLMs is extremely resource intensive, and customizing them for various deployment scenarios characterized by limited compute and memory resources through repeated training is impractical. In this paper, we introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment. The Flextron architecture utilizes a nested elastic structure to rapidly adapt to specific user-defined latency and accuracy targets during inference with no additional fine-tuning required. It is also input-adaptive, and can automatically route tokens through its sub-networks for improved performance and efficiency. We present a sample-efficient training method and associated routing algorithms for systematically transforming an existing trained LLM into a Flextron model. We evaluate Flextron on the GPT-3 and LLama-2 family of LLMs, and demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.


The Sparsity Roofline: Understanding the Hardware Limits of Sparse Neural Networks

arXiv.org Artificial Intelligence

We introduce the Sparsity Roofline, a visual performance model for evaluating sparsity in neural networks. The Sparsity Roofline jointly models network accuracy, sparsity, and theoretical inference speedup. Our approach does not require implementing and benchmarking optimized kernels, and the theoretical speedup becomes equal to the actual speedup when the corresponding dense and sparse kernels are well-optimized. We achieve this through a novel analytical model for predicting sparse network performance, and validate the predicted speedup using several real-world computer vision architectures pruned across a range of sparsity patterns and degrees. We demonstrate the utility and ease-of-use of our model through two case studies: (1) we show how machine learning researchers can predict the performance of unimplemented or unoptimized block-structured sparsity patterns, and (2) we show how hardware designers can predict the performance implications of new sparsity patterns and sparse data formats in hardware. In both scenarios, the Sparsity Roofline helps performance experts identify sparsity regimes with the highest performance potential.


HighLight: Efficient and Flexible DNN Acceleration with Hierarchical Structured Sparsity

arXiv.org Artificial Intelligence

Due to complex interactions among various deep neural network (DNN) optimization techniques, modern DNNs can have weights and activations that are dense or sparse with diverse sparsity degrees. To offer a good trade-off between accuracy and hardware performance, an ideal DNN accelerator should have high flexibility to efficiently translate DNN sparsity into reductions in energy and/or latency without incurring significant complexity overhead. This paper introduces hierarchical structured sparsity (HSS), with the key insight that we can systematically represent diverse sparsity degrees by having them hierarchically composed from multiple simple sparsity patterns. As a result, HSS simplifies the underlying hardware since it only needs to support simple sparsity patterns; this significantly reduces the sparsity acceleration overhead, which improves efficiency. Motivated by such opportunities, we propose a simultaneously efficient and flexible accelerator, named HighLight, to accelerate DNNs that have diverse sparsity degrees (including dense). Due to the flexibility of HSS, different HSS patterns can be introduced to DNNs to meet different applications' accuracy requirements. Compared to existing works, HighLight achieves a geomean of up to 6.4x better energy-delay product (EDP) across workloads with diverse sparsity degrees, and always sits on the EDP-accuracy Pareto frontier for representative DNNs


Understanding the Effect of the Long Tail on Neural Network Compression

arXiv.org Artificial Intelligence

Network compression is now a mature sub-field of neural network research: over the last decade, significant progress has been made towards reducing the size of models and speeding up inference, while maintaining the classification accuracy. However, many works have observed that focusing on just the overall accuracy can be misguided. E.g., it has been shown that mismatches between the full and compressed models can be biased towards under-represented classes. This raises the important research question, can we achieve network compression while maintaining "semantic equivalence" with the original network? In this work, we study this question in the context of the "long tail" phenomenon in computer vision datasets observed by Feldman, et al. They argue that memorization of certain inputs (appropriately defined) is essential to achieving good generalization. As compression limits the capacity of a network (and hence also its ability to memorize), we study the question: are mismatches between the full and compressed models correlated with the memorized training data? We present positive evidence in this direction for image classification tasks, by considering different base architectures and compression schemes.


Reliable Model Compression via Label-Preservation-Aware Loss Functions

arXiv.org Artificial Intelligence

Model compression is a ubiquitous tool that brings the power of modern deep learning to edge devices with power and latency constraints. The goal of model compression is to take a large reference neural network and output a smaller and less expensive compressed network that is functionally equivalent to the reference. Compression typically involves pruning and/or quantization, followed by re-training to maintain the reference accuracy. However, it has been observed that compression can lead to a considerable mismatch in the labels produced by the reference and the compressed models, resulting in bias and unreliability. To combat this, we present a framework that uses a teacher-student learning paradigm to better preserve labels. We investigate the role of additional terms to the loss function and show how to automatically tune the associated parameters. We demonstrate the effectiveness of our approach both quantitatively and qualitatively on multiple compression schemes and accuracy recovery algorithms using a set of 8 different real-world network architectures. We obtain a significant reduction of up to 4.1X in the number of mismatches between the compressed and reference models, and up to 5.7X in cases where the reference model makes the correct prediction.