Goto

Collaborating Authors

 Mukherjee, Subhojyoti


From Selection to Generation: A Survey of LLM-based Active Learning

arXiv.org Artificial Intelligence

Active Learning (AL) has been a powerful paradigm for improving model efficiency and performance by selecting the most informative data points for labeling and training. In recent active learning frameworks, Large Language Models (LLMs) have been employed not only for selection but also for generating entirely new data instances and providing more cost-effective annotations. Motivated by the increasing importance of high-quality data and efficient model training in the era of LLMs, we present a comprehensive survey on LLM-based Active Learning. We introduce an intuitive taxonomy that categorizes these techniques and discuss the transformative roles LLMs can play in the active learning loop. We further examine the impact of AL on LLM learning paradigms and its applications across various domains. Finally, we identify open challenges and propose future research directions. This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques and deploy them to new applications.


Logits are All We Need to Adapt Closed Models

arXiv.org Artificial Intelligence

Many commercial Large Language Models (LLMs) are often closed-source, limiting developers to prompt tuning for aligning content generation with specific applications. While these models currently do not provide access to token logits, we argue that if such access were available, it would enable more powerful adaptation techniques beyond prompt engineering. In this paper, we propose a token-level probability reweighting framework that, given access to logits and a small amount of task-specific data, can effectively steer black-box LLMs toward application-specific content generation. Our approach views next-token prediction through the lens of supervised classification. We show that aligning black-box LLMs with task-specific data can be formulated as a label noise correction problem, leading to \emph{Plugin} model -- an autoregressive probability reweighting model that operates solely on logits. We provide theoretical justification for why reweighting logits alone is sufficient for task adaptation. Extensive experiments with multiple datasets, LLMs, and reweighting models demonstrate the effectiveness of our method, advocating for broader access to token logits in closed-source models.


Multi-Objective Alignment of Large Language Models Through Hypervolume Maximization

arXiv.org Artificial Intelligence

Multi-objective alignment from human feedback (MOAHF) in large language models (LLMs) is a challenging problem as human preferences are complex, multifaceted, and often conflicting. Recent works on MOAHF considered a-priori multi-objective optimization (MOO), where human preferences are known at training or inference time. In contrast, when human preferences are unknown or difficult to quantify, a natural approach is to cover the Pareto front by multiple diverse solutions. We propose an algorithm HaM for learning diverse LLM policies that maximizes their hypervolume. This is the first application of a-posteriori MOO to MOAHF. HaM is computationally and space efficient, and empirically superior across objectives such as harmlessness, helpfulness, humor, faithfulness, and hallucination, on various datasets.


Off-Policy Evaluation from Logged Human Feedback

arXiv.org Machine Learning

Learning from human feedback has been central to recent advances in artificial intelligence and machine learning. Since the collection of human feedback is costly, a natural question to ask is if the new feedback always needs to collected. Or could we evaluate a new model with the human feedback on responses of another model? This motivates us to study off-policy evaluation from logged human feedback. We formalize the problem, propose both model-based and model-free estimators for policy values, and show how to optimize them. We analyze unbiasedness of our estimators and evaluate them empirically. Our estimators can predict the absolute values of evaluated policies, rank them, and be optimized.


Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured Bandit Learning

arXiv.org Artificial Intelligence

In this paper, we study multi-task structured bandit problem where the goal is to learn a near-optimal algorithm that minimizes cumulative regret. The tasks share a common structure and the algorithm exploits the shared structure to minimize the cumulative regret for an unseen but related test task. We use a transformer as a decision-making algorithm to learn this shared structure so as to generalize to the test task. The prior work of pretrained decision transformers like DPT requires access to the optimal action during training which may be hard in several scenarios. Diverging from these works, our learning algorithm does not need the knowledge of optimal action per task during training but predicts a reward vector for each of the actions using only the observed offline data from the diverse training tasks. Finally, during inference time, it selects action using the reward predictions employing various exploration strategies in-context for an unseen test task. Our model outperforms other SOTA methods like DPT, and Algorithmic Distillation over a series of experiments on several structured bandit problems (linear, bilinear, latent, non-linear). Interestingly, we show that our algorithm, without the knowledge of the underlying problem structure, can learn a near-optimal policy in-context by leveraging the shared structure across diverse tasks. We further extend the field of pre-trained decision transformers by showing that they can leverage unseen tasks with new actions and still learn the underlying latent structure to derive a near-optimal policy. We validate this over several experiments to show that our proposed solution is very general and has wide applications to potentially emergent online and offline strategies at test time. Finally, we theoretically analyze the performance of our algorithm and obtain generalization bounds in the in-context multi-task learning setting.


SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDP

arXiv.org Artificial Intelligence

In this paper, we study safe data collection for the purpose of policy evaluation in tabular Markov decision processes (MDPs). In policy evaluation, we are given a \textit{target} policy and asked to estimate the expected cumulative reward it will obtain. Policy evaluation requires data and we are interested in the question of what \textit{behavior} policy should collect the data for the most accurate evaluation of the target policy. While prior work has considered behavior policy selection, in this paper, we additionally consider a safety constraint on the behavior policy. Namely, we assume there exists a known default policy that incurs a particular expected cost when run and we enforce that the cumulative cost of all behavior policies ran is better than a constant factor of the cost that would be incurred had we always run the default policy. We first show that there exists a class of intractable MDPs where no safe oracle algorithm with knowledge about problem parameters can efficiently collect data and satisfy the safety constraints. We then define the tractability condition for an MDP such that a safe oracle algorithm can efficiently collect data and using that we prove the first lower bound for this setting. We then introduce an algorithm SaVeR for this problem that approximates the safe oracle algorithm and bound the finite-sample mean squared error of the algorithm while ensuring it satisfies the safety constraint. Finally, we show in simulations that SaVeR produces low MSE policy evaluation while satisfying the safety constraint.


Optimal Design for Human Feedback

arXiv.org Artificial Intelligence

Learning of preference models from human feedback has been central to recent advances in artificial intelligence. Motivated by the cost of obtaining high-quality human annotations, we study the problem of data collection for learning preference models. The key idea in our work is to generalize the optimal design, a method for computing information gathering policies, to ranked lists. To show the generality of our ideas, we study both absolute and relative feedback on the lists. We design efficient algorithms for both settings and analyze them. We prove that our preference model estimators improve with more data and so does the ranking error under the estimators. Finally, we experiment with several synthetic and real-world datasets to show the statistical efficiency of our algorithms.


Experimental Design for Active Transductive Inference in Large Language Models

arXiv.org Artificial Intelligence

One emergent ability of large language models (LLMs) is that query-specific examples can be included in the prompt at inference time. In this work, we use active learning for adaptive prompt design and call it Active In-context Prompt Design (AIPD). We design the LLM prompt by adaptively choosing few-shot examples from a training set to optimize performance on a test set. The training examples are initially unlabeled and we obtain the label of the most informative ones, which maximally reduces uncertainty in the LLM prediction. We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen. We analyze these algorithms in linear models: first GO and then use its equivalence with SAL. We experiment with many different tasks in small, medium-sized, and large language models; and show that GO and SAL outperform other methods for choosing few-shot examples in the LLM prompt at inference time.


Multi-task Representation Learning for Pure Exploration in Bilinear Bandits

arXiv.org Artificial Intelligence

We study multi-task representation learning for the problem of pure exploration in bilinear bandits. In bilinear bandits, an action takes the form of a pair of arms from two different entity types and the reward is a bilinear function of the known feature vectors of the arms. In the \textit{multi-task bilinear bandit problem}, we aim to find optimal actions for multiple tasks that share a common low-dimensional linear representation. The objective is to leverage this characteristic to expedite the process of identifying the best pair of arms for all tasks. We propose the algorithm GOBLIN that uses an experimental design approach to optimize sample allocations for learning the global representation as well as minimize the number of samples needed to identify the optimal pair of arms in individual tasks. To the best of our knowledge, this is the first study to give sample complexity analysis for pure exploration in bilinear bandits with shared representation. Our results demonstrate that by learning the shared representation across tasks, we achieve significantly improved sample complexity compared to the traditional approach of solving tasks independently.


Efficient and Interpretable Bandit Algorithms

arXiv.org Artificial Intelligence

Motivated by the importance of explainability in modern machine learning, we design bandit algorithms that are \emph{efficient} and \emph{interpretable}. A bandit algorithm is interpretable if it explores with the objective of reducing uncertainty in the unknown model parameter. To quantify the interpretability, we introduce a novel metric of \textit{uncertainty loss}, which compares the rate of the uncertainty reduction to the theoretical optimum. We propose CODE, a bandit algorithm based on a \textbf{C}onstrained \textbf{O}ptimal \textbf{DE}sign, that is interpretable and maximally reduces the uncertainty. The key idea in \code is to explore among all plausible actions, determined by a statistical constraint, to achieve interpretability. We implement CODE efficiently in both multi-armed and linear bandits and derive near-optimal regret bounds by leveraging the optimality criteria of the approximate optimal design. CODE can be also viewed as removing phases in conventional phased elimination, which makes it more practical and general. We demonstrate the advantage of \code by numerical experiments on both synthetic and real-world problems. CODE outperforms other state-of-the-art interpretable designs while matching the performance of popular but uninterpretable designs, such as upper confidence bound algorithms.