Goto

Collaborating Authors

 Mourrat, Jean-Christophe


Humanity's Last Exam

arXiv.org Artificial Intelligence

Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.


Sum-of-norms clustering does not separate nearby balls

arXiv.org Artificial Intelligence

Sum-of-norms clustering is a popular convexification of K-means clustering. We show that, if the dataset is made of a large number of independent random variables distributed according to the uniform measure on the union of two disjoint balls of unit radius, and if the balls are sufficiently close to one another, then sum-of-norms clustering will typically fail to recover the decomposition of the dataset into two clusters. As the dimension tends to infinity, this happens even when the distance between the centers of the two balls is taken to be as large as 2 2. In order to show this, we introduce and analyze a continuous version of sum-of-norms clustering, where the dataset is replaced by a general measure. In particular, we state and prove a local-global characterization of the clustering that seems to be new even in the case of discrete datapoints.


Local versions of sum-of-norms clustering

arXiv.org Machine Learning

Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clustering of multivariate data. We propose and study a localized version of this method, and show in particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our bound is expressed in terms of the number of datapoints and the localization length of the functional.