Goto

Collaborating Authors

 Mou, Chengjie


An Integrative Paradigm for Enhanced Stroke Prediction: Synergizing XGBoost and xDeepFM Algorithms

arXiv.org Artificial Intelligence

Stroke prediction plays a crucial role in preventing and managing this debilitating condition. In this study, we address the challenge of stroke prediction using a comprehensive dataset, and propose an ensemble model that combines the power of XGBoost and xDeepFM algorithms. Our work aims to improve upon existing stroke prediction models by achieving higher accuracy and robustness. Through rigorous experimentation, we validate the effectiveness of our ensemble model using the AUC metric. Through comparing our findings with those of other models in the field, we gain valuable insights into the merits and drawbacks of various approaches. This, in turn, contributes significantly to the progress of machine learning and deep learning techniques specifically in the domain of stroke prediction.


FineEHR: Refine Clinical Note Representations to Improve Mortality Prediction

arXiv.org Artificial Intelligence

Monitoring the health status of patients in the Intensive Care Unit (ICU) is a critical aspect of providing superior care and treatment. The availability of large-scale electronic health records (EHR) provides machine learning models with an abundance of clinical text and vital sign data, enabling them to make highly accurate predictions. Despite the emergence of advanced Natural Language Processing (NLP) algorithms for clinical note analysis, the complex textual structure and noise present in raw clinical data have posed significant challenges. Coarse embedding approaches without domain-specific refinement have limited the accuracy of these algorithms. To address this issue, we propose FINEEHR, a system that utilizes two representation learning techniques, namely metric learning and fine-tuning, to refine clinical note embeddings, while leveraging the intrinsic correlations among different health statuses and note categories. We evaluate the performance of FINEEHR using two metrics, namely Area Under the Curve (AUC) and AUC-PR, on a real-world MIMIC III dataset. Our experimental results demonstrate that both refinement approaches improve prediction accuracy, and their combination yields the best results. Moreover, our proposed method outperforms prior works, with an AUC improvement of over 10%, achieving an average AUC of 96.04% and an average AUC-PR of 96.48% across various classifiers.


BotShape: A Novel Social Bots Detection Approach via Behavioral Patterns

arXiv.org Artificial Intelligence

An essential topic in online social network security is how to accurately detect bot accounts and relieve their harmful impacts (e.g., misinformation, rumor, and spam) on genuine users. Based on a real-world data set, we construct behavioral sequences from raw event logs. After extracting critical characteristics from behavioral time series, we observe differences between bots and genuine users and similar patterns among bot accounts. We present a novel social bot detection system BotShape, to automatically catch behavioral sequences and characteristics as features for classifiers to detect bots. We evaluate the detection performance of our system in ground-truth instances, showing an average accuracy of 98.52% and an average f1-score of 96.65% on various types of classifiers. After comparing it with other research, we conclude that BotShape is a novel approach to profiling an account, which could improve performance for most methods by providing significant behavioral features.