Morris, Quaid
Reconstructing subclonal composition and evolution from whole genome sequencing of tumors
Deshwar, Amit G., Vembu, Shankar, Yung, Christina K., Jang, Gun Ho, Stein, Lincoln, Morris, Quaid
Tumors often contain multiple subpopulations of cancerous cells defined by distinct somatic mutations. We describe a new method, PhyloWGS, that can be applied to WGS data from one or more tumor samples to reconstruct complete genotypes of these subpopulations based on variant allele frequencies (VAFs) of point mutations and population frequencies of structural variations. We introduce a principled phylogenic correction for VAFs in loci affected by copy number alterations and we show that this correction greatly improves subclonal reconstruction compared to existing methods.
Comparing Nonparametric Bayesian Tree Priors for Clonal Reconstruction of Tumors
Deshwar, Amit G., Vembu, Shankar, Morris, Quaid
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor.
Inferring clonal evolution of tumors from single nucleotide somatic mutations
Jiao, Wei, Vembu, Shankar, Deshwar, Amit G., Stein, Lincoln, Morris, Quaid
High-throughput sequencing allows the detection and quantification of frequencies of somatic single nucleotide variants (SNV) in heterogeneous tumor cell populations. In some cases, the evolutionary history and population frequency of the subclonal lineages of tumor cells present in the sample can be reconstructed from these SNV frequency measurements. However, automated methods to do this reconstruction are not available and the conditions under which reconstruction is possible have not been described. We describe the conditions under which the evolutionary history can be uniquely reconstructed from SNV frequencies from single or multiple samples from the tumor population and we introduce a new statistical model, PhyloSub, that infers the phylogeny and genotype of the major subclonal lineages represented in the population of cancer cells. It uses a Bayesian nonparametric prior over trees that groups SNVs into major subclonal lineages and automatically estimates the number of lineages and their ancestry. We sample from the joint posterior distribution over trees to identify evolutionary histories and cell population frequencies that have the highest probability of generating the observed SNV frequency data. When multiple phylogenies are consistent with a given set of SNV frequencies, PhyloSub represents the uncertainty in the tumor phylogeny using a partial order plot. Experiments on a simulated dataset and two real datasets comprising tumor samples from acute myeloid leukemia and chronic lymphocytic leukemia patients demonstrate that PhyloSub can infer both linear (or chain) and branching lineages and its inferences are in good agreement with ground truth, where it is available.
Recognition Networks for Approximate Inference in BN20 Networks
Morris, Quaid
We propose using recognition networks for approximate inference inBayesian networks (BNs). A recognition network is a multilayerperception (MLP) trained to predict posterior marginals given observedevidence in a particular BN. The input to the MLP is a vector of thestates of the evidential nodes. The activity of an output unit isinterpreted as a prediction of the posterior marginal of thecorresponding variable. The MLP is trained using samples generated fromthe corresponding BN.We evaluate a recognition network that was trained to do inference ina large Bayesian network, similar in structure and complexity to theQuick Medical Reference, Decision Theoretic (QMR-DT). Our networkis a binary, two-layer, noisy-OR network containing over 4000 potentially observable nodes and over 600 unobservable, hidden nodes. Inreal medical diagnosis, most observables are unavailable, and there isa complex and unknown bias that selects which ones are provided. Weincorporate a very basic type of selection bias in our network: a knownpreference that available observables are positive rather than negative.Even this simple bias has a significant effect on the posterior. We compare the performance of our recognition network tostate-of-the-art approximate inference algorithms on a large set oftest cases. In order to evaluate the effect of our simplistic modelof the selection bias, we evaluate algorithms using a variety ofincorrectly modeled observation biases. Recognition networks performwell using both correct and incorrect observation biases.
Using the Gene Ontology Hierarchy when Predicting Gene Function
Mostafavi, Sara, Morris, Quaid
The problem of multilabel classification when the labels are related through a hierarchical categorization scheme occurs in many application domains such as computational biology. For example, this problem arises naturally when trying to automatically assign gene function using a controlled vocabularies like Gene Ontology. However, most existing approaches for predicting gene functions solve independent classification problems to predict genes that are involved in a given function category, independently of the rest. Here, we propose two simple methods for incorporating information about the hierarchical nature of the categorization scheme. In the first method, we use information about a gene's previous annotation to set an initial prior on its label. In a second approach, we extend a graph-based semi-supervised learning algorithm for predicting gene function in a hierarchy. We show that we can efficiently solve this problem by solving a linear system of equations. We compare these approaches with a previous label reconciliation-based approach. Results show that using the hierarchy information directly, compared to using reconciliation methods, improves gene function prediction.