Goto

Collaborating Authors

 Morimoto, Jun


Cutting Sequence Diffuser: Sim-to-Real Transferable Planning for Object Shaping by Grinding

arXiv.org Artificial Intelligence

Automating object shaping by grinding with a robot is a crucial industrial process that involves removing material with a rotating grinding belt. This process generates removal resistance depending on such process conditions as material type, removal volume, and robot grinding posture, all of which complicate the analytical modeling of shape transitions. Additionally, a data-driven approach based on real-world data is challenging due to high data collection costs and the irreversible nature of the process. This paper proposes a Cutting Sequence Diffuser (CSD) for object shaping by grinding. The CSD, which only requires simple simulation data for model learning, offers an efficient way to plan long-horizon action sequences transferable to the real world. Our method designs a smooth action space with constrained small removal volumes to suppress the complexity of the shape transitions caused by removal resistance, thus reducing the reality gap in simulations. Moreover, by using a diffusion model to generate long-horizon action sequences, our approach reduces the planning time and allows for grinding the target shape while adhering to the constraints of a small removal volume per step. Through evaluations in both simulation and real robot experiments, we confirmed that our CSD was effective for grinding to different materials and various target shapes in a short time.


Goal-Conditioned Terminal Value Estimation for Real-time and Multi-task Model Predictive Control

arXiv.org Artificial Intelligence

While MPC enables nonlinear feedback control by solving an optimal control problem at each timestep, the computational burden tends to be significantly large, making it difficult to optimize a policy within the control period. To address this issue, one possible approach is to utilize terminal value learning to reduce computational costs. However, the learned value cannot be used for other tasks in situations where the task dynamically changes in the original MPC setup. In this study, we develop an MPC framework with goal-conditioned terminal value learning to achieve multitask policy optimization while reducing computational time. Furthermore, by using a hierarchical control structure that allows the upper-level trajectory planner to output appropriate goal-conditioned trajectories, we demonstrate that a robot model is able to generate diverse motions. We evaluate the proposed method on a bipedal inverted pendulum robot model and confirm that combining goal-conditioned terminal value learning with an upper-level trajectory planner enables real-time control; thus, the robot successfully tracks a target trajectory on sloped terrain.


Phase-Amplitude Reduction-Based Imitation Learning

arXiv.org Artificial Intelligence

In this study, we propose the use of the phase-amplitude reduction method to construct an imitation learning framework. Imitating human movement trajectories is recognized as a promising strategy for generating a range of human-like robot movements. Unlike previous dynamical system-based imitation learning approaches, our proposed method allows the robot not only to imitate a limit cycle trajectory but also to replicate the transient movement from the initial or disturbed state to the limit cycle. Consequently, our method offers a safer imitation learning approach that avoids generating unpredictable motions immediately after disturbances or from a specified initial state. We first validated our proposed method by reconstructing a simple limit-cycle attractor. We then compared the proposed approach with a conventional method on a lemniscate trajectory tracking task with a simulated robot arm. Our findings confirm that our proposed method can more accurately generate transient movements to converge on a target periodic attractor compared to the previous standard approach. Subsequently, we applied our method to a real robot arm to imitate periodic human movements.


Unsupervised Neural Motion Retargeting for Humanoid Teleoperation

arXiv.org Artificial Intelligence

This study proposes an approach to human-to-humanoid teleoperation using GAN-based online motion retargeting, which obviates the need for the construction of pairwise datasets to identify the relationship between the human and the humanoid kinematics. Consequently, it can be anticipated that our proposed teleoperation system will reduce the complexity and setup requirements typically associated with humanoid controllers, thereby facilitating the development of more accessible and intuitive teleoperation systems for users without robotics knowledge. The experiments demonstrated the efficacy of the proposed method in retargeting a range of upper-body human motions to humanoid, including a body jab motion and a basketball shoot motion. Moreover, the human-in-the-loop teleoperation performance was evaluated by measuring the end-effector position errors between the human and the retargeted humanoid motions. The results demonstrated that the error was comparable to those of conventional motion retargeting methods that require pairwise motion datasets. Finally, a box pick-and-place task was conducted to demonstrate the usability of the developed humanoid teleoperation system.


A Policy Adaptation Method for Implicit Multitask Reinforcement Learning Problems

arXiv.org Artificial Intelligence

In dynamic motion generation tasks, including contact and collisions, small changes in policy parameters can lead to extremely different returns. For example, in soccer, the ball can fly in completely different directions with a similar heading motion by slightly changing the hitting position or the force applied to the ball or when the friction of the ball varies. However, it is difficult to imagine that completely different skills are needed for heading a ball in different directions. In this study, we proposed a multitask reinforcement learning algorithm for adapting a policy to implicit changes in goals or environments in a single motion category with different reward functions or physical parameters of the environment. We evaluated the proposed method on the ball heading task using a monopod robot model. The results showed that the proposed method can adapt to implicit changes in the goal positions or the coefficients of restitution of the ball, whereas the standard domain randomization approach cannot cope with different task settings.


Learning to Shape by Grinding: Cutting-surface-aware Model-based Reinforcement Learning

arXiv.org Artificial Intelligence

Object shaping by grinding is a crucial industrial process in which a rotating grinding belt removes material. Object-shape transition models are essential to achieving automation by robots; however, learning such a complex model that depends on process conditions is challenging because it requires a significant amount of data, and the irreversible nature of the removal process makes data collection expensive. This paper proposes a cutting-surface-aware Model-Based Reinforcement Learning (MBRL) method for robotic grinding. Our method employs a cutting-surface-aware model as the object's shape transition model, which in turn is composed of a geometric cutting model and a cutting-surface-deviation model, based on the assumption that the robot action can specify the cutting surface made by the tool. Furthermore, according to the grinding resistance theory, the cutting-surface-deviation model does not require raw shape information, making the model's dimensions smaller and easier to learn than a naive shape transition model directly mapping the shapes. Through evaluation and comparison by simulation and real robot experiments, we confirm that our MBRL method can achieve high data efficiency for learning object shaping by grinding and also provide generalization capability for initial and target shapes that differ from the training data.


Model-Based Policy Gradients with Parameter-Based Exploration by Least-Squares Conditional Density Estimation

arXiv.org Machine Learning

The goal of reinforcement learning (RL) is to let an agent learn an optimal control policy in an unknown environment so that future expected rewards are maximized. The model-free RL approach directly learns the policy based on data samples. Although using many samples tends to improve the accuracy of policy learning, collecting a large number of samples is often expensive in practice. On the other hand, the model-based RL approach first estimates the transition model of the environment and then learns the policy based on the estimated transition model. Thus, if the transition model is accurately learned from a small amount of data, the model-based approach can perform better than the model-free approach. In this paper, we propose a novel model-based RL method by combining a recently proposed model-free policy search method called policy gradients with parameter-based exploration and the state-of-the-art transition model estimator called least-squares conditional density estimation. Through experiments, we demonstrate the practical usefulness of the proposed method.


Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration

arXiv.org Machine Learning

The policy gradient approach is a flexible and powerful reinforcement learning method particularly for problems with continuous actions such as robot control. A common challenge in this scenario is how to reduce the variance of policy gradient estimates for reliable policy updates. In this paper, we combine the following three ideas and give a highly effective policy gradient method: (a) the policy gradients with parameter based exploration, which is a recently proposed policy search method with low variance of gradient estimates, (b) an importance sampling technique, which allows us to reuse previously gathered data in a consistent way, and (c) an optimal baseline, which minimizes the variance of gradient estimates with their unbiasedness being maintained. For the proposed method, we give theoretical analysis of the variance of gradient estimates and show its usefulness through extensive experiments.


Nonparametric Representation of Policies and Value Functions: A Trajectory-Based Approach

Neural Information Processing Systems

A longstanding goal of reinforcement learning is to develop nonparametric representationsof policies and value functions that support rapid learning without suffering from interference or the curse of dimensionality. Wehave developed a trajectory-based approach, in which policies and value functions are represented nonparametrically along trajectories. Thesetrajectories, policies, and value functions are updated as the value function becomes more accurate or as a model of the task is updated. Wehave applied this approach to periodic tasks such as hopping and walking, which required handling discount factors and discontinuities inthe task dynamics, and using function approximation to represent value functions at discontinuities. We also describe extensions of the approach tomake the policies more robust to modeling error and sensor noise.


Minimax Differential Dynamic Programming: An Application to Robust Biped Walking

Neural Information Processing Systems

We developed a robust control policy design method in high-dimensional state space by using differential dynamic programming with a minimax criterion. As an example, we applied our method to a simulated five link biped robot. The results show lower joint torques from the optimal control policy compared to a hand-tuned PD servo controller. Results also show that the simulated biped robot can successfully walk with unknown disturbances that cause controllers generated by standard differential dynamic programming and the hand-tuned PD servo to fail. Learning to compensate for modeling error and previously unknown disturbances in conjunction with robust control design is also demonstrated.