Goto

Collaborating Authors

 Moon, Kevin R.


Random Forest Autoencoders for Guided Representation Learning

arXiv.org Artificial Intelligence

Decades of research have produced robust methods for unsupervised data visualization, yet supervised visualization$\unicode{x2013}$where expert labels guide representations$\unicode{x2013}$remains underexplored, as most supervised approaches prioritize classification over visualization. Recently, RF-PHATE, a diffusion-based manifold learning method leveraging random forests and information geometry, marked significant progress in supervised visualization. However, its lack of an explicit mapping function limits scalability and prevents application to unseen data, posing challenges for large datasets and label-scarce scenarios. To overcome these limitations, we introduce Random Forest Autoencoders (RF-AE), a neural network-based framework for out-of-sample kernel extension that combines the flexibility of autoencoders with the supervised learning strengths of random forests and the geometry captured by RF-PHATE. RF-AE enables efficient out-of-sample supervised visualization and outperforms existing methods, including RF-PHATE's standard kernel extension, in both accuracy and interpretability. Additionally, RF-AE is robust to the choice of hyper-parameters and generalizes to any kernel-based dimensionality reduction method.


Improved Background Estimation for Gas Plume Identification in Hyperspectral Images

arXiv.org Artificial Intelligence

Longwave infrared (LWIR) hyperspectral imaging can be used for many tasks in remote sensing, including detecting and identifying effluent gases by LWIR sensors on airborne platforms. Once a potential plume has been detected, it needs to be identified to determine exactly what gas or gases are present in the plume. During identification, the background underneath the plume needs to be estimated and removed to reveal the spectral characteristics of the gas of interest. Current standard practice is to use ``global" background estimation, where the average of all non-plume pixels is used to estimate the background for each pixel in the plume. However, if this global background estimate does not model the true background under the plume well, then the resulting signal can be difficult to identify correctly. The importance of proper background estimation increases when dealing with weak signals, large libraries of gases of interest, and with uncommon or heterogeneous backgrounds. In this paper, we propose two methods of background estimation, in addition to three existing methods, and compare each against global background estimation to determine which perform best at estimating the true background radiance under a plume, and for increasing identification confidence using a neural network classification model. We compare the different methods using 640 simulated plumes. We find that PCA is best at estimating the true background under a plume, with a median of 18,000 times less MSE compared to global background estimation. Our proposed K-Nearest Segments algorithm improves median neural network identification confidence by 53.2%.


Model agnostic local variable importance for locally dependent relationships

arXiv.org Machine Learning

Global variable importance measures are commonly used to interpret machine learning model results. Local variable importance techniques assess how variables contribute to individual observations rather than the entire dataset. Current methods typically fail to accurately reflect locally dependent relationships between variables and instead focus on marginal importance values. Additionally, they are not natively adapted for multi-class classification problems. We propose a new model-agnostic method for calculating local variable importance, CLIQUE, that captures locally dependent relationships, contains improvements over permutation-based methods, and can be directly applied to multi-class classification problems. Simulated and real-world examples show that CLIQUE emphasizes locally dependent information and properly reduces bias in regions where variables do not affect the response.


Forest Proximities for Time Series

arXiv.org Machine Learning

RF-GAP has recently been introduced as an improved random forest proximity measure. In this paper, we present PF-GAP, an extension of RF-GAP proximities to proximity forests, an accurate and efficient time series classification model. We use the forest proximities in connection with Multi-Dimensional Scaling to obtain vector embeddings of univariate time series, comparing the embeddings to those obtained using various time series distance measures. We also use the forest proximities alongside Local Outlier Factors to investigate the connection between misclassified points and outliers, comparing with nearest neighbor classifiers which use time series distance measures. We show that the forest proximities may exhibit a stronger connection between misclassified points and outliers than nearest neighbor classifiers.


Enhancing Supervised Visualization through Autoencoder and Random Forest Proximities for Out-of-Sample Extension

arXiv.org Machine Learning

The value of supervised dimensionality reduction lies in its ability to uncover meaningful connections between data features and labels. Common dimensionality reduction methods embed a set of fixed, latent points, but are not capable of generalizing to an unseen test set. In this paper, we provide an out-of-sample extension method for the random forest-based supervised dimensionality reduction method, RF-PHATE, combining information learned from the random forest model with the function-learning capabilities of autoencoders. Through quantitative assessment of various autoencoder architectures, we identify that networks that reconstruct random forest proximities are more robust for the embedding extension problem. Furthermore, by leveraging proximity-based prototypes, we achieve a 40% reduction in training time without compromising extension quality. Our method does not require label information for out-of-sample points, thus serving as a semi-supervised method, and can achieve consistent quality using only 10% of the training data.


Noisy Data Visualization using Functional Data Analysis

arXiv.org Machine Learning

Data visualization via dimensionality reduction is an important tool in exploratory data analysis. However, when the data are noisy, many existing methods fail to capture the underlying structure of the data. The method called Empirical Intrinsic Geometry (EIG) was previously proposed for performing dimensionality reduction on high dimensional dynamical processes while theoretically eliminating all noise. However, implementing EIG in practice requires the construction of high-dimensional histograms, which suffer from the curse of dimensionality. Here we propose a new data visualization method called Functional Information Geometry (FIG) for dynamical processes that adapts the EIG framework while using approaches from functional data analysis to mitigate the curse of dimensionality. We experimentally demonstrate that the resulting method outperforms a variant of EIG designed for visualization in terms of capturing the true structure, hyperparameter robustness, and computational speed. We then use our method to visualize EEG brain measurements of sleep activity.


Symmetry Discovery Beyond Affine Transformations

arXiv.org Machine Learning

Symmetry detection has been shown to improve various machine learning tasks. In the context of continuous symmetry detection, current state of the art experiments are limited to the detection of affine transformations. Under the manifold assumption, we outline a framework for discovering continuous symmetry in data beyond the affine transformation group. We also provide a similar framework for discovering discrete symmetry. We experimentally compare our method to an existing method known as LieGAN and show that our method is competitive at detecting affine symmetries for large sample sizes and superior than LieGAN for small sample sizes. We also show our method is able to detect continuous symmetries beyond the affine group and is generally more computationally efficient than LieGAN.


Local Background Estimation for Improved Gas Plume Identification in Hyperspectral Images

arXiv.org Artificial Intelligence

Deep learning identification models have shown promise for identifying gas plumes in Longwave IR hyperspectral images of urban scenes, particularly when a large library of gases are being considered. Because many gases have similar spectral signatures, it is important to properly estimate the signal from a detected plume. Typically, a scene's global mean spectrum and covariance matrix are estimated to whiten the plume's signal, which removes the background's signature from the gas signature. However, urban scenes can have many different background materials that are spatially and spectrally heterogeneous. This can lead to poor identification performance when the global background estimate is not representative of a given local background material. We use image segmentation, along with an iterative background estimation algorithm, to create local estimates for the various background materials that reside underneath a gas plume. Our method outperforms global background estimation on a set of simulated and real gas plumes. This method shows promise in increasing deep learning identification confidence, while being simple and easy to tune when considering diverse plumes.


Diffusion Transport Alignment

arXiv.org Machine Learning

The integration of multimodal data presents a challenge in cases when the study of a given phenomena by different instruments or conditions generates distinct but related domains. Many existing data integration methods assume a known one-to-one correspondence between domains of the entire dataset, which may be unrealistic. Furthermore, existing manifold alignment methods are not suited for cases where the data contains domain-specific regions, i.e., there is not a counterpart for a certain portion of the data in the other domain. We propose Diffusion Transport Alignment (DTA), a semi-supervised manifold alignment method that exploits prior correspondence knowledge between only a few points to align the domains. By building a diffusion process, DTA finds a transportation plan between data measured from two heterogeneous domains with different feature spaces, which by assumption, share a similar geometrical structure coming from the same underlying data generating process. DTA can also compute a partial alignment in a data-driven fashion, resulting in accurate alignments when some data are measured in only one domain. We empirically demonstrate that DTA outperforms other methods in aligning multimodal data in this semisupervised setting. We also empirically show that the alignment obtained by DTA can improve the performance of machine learning tasks, such as domain adaptation, inter-domain feature mapping, and exploratory data analysis, while outperforming competing methods.


Geometry- and Accuracy-Preserving Random Forest Proximities

arXiv.org Machine Learning

Abstract--Random forests are considered one of the best out-of-the-box classification and regression algorithms due to their high level of predictive performance with relatively little tuning. Pairwise proximities can be computed from a trained random forest which measure the similarity between data points relative to the supervised task. Random forest proximities have been used in many applications including the identification of variable importance, data imputation, outlier detection, and data visualization. However, existing definitions of random forest proximities do not accurately reflect the data geometry learned by the random forest. In this paper, we introduce a novel definition of random forest proximities called Random Forest-Geometry-and Accuracy-Preserving proximities (RF-GAP). We prove that the proximity-weighted sum (regression) or majority vote (classification) using RF-GAP exactly match the out-of-bag random forest prediction, thus capturing the data geometry learned by the random forest. We empirically show that this improved geometric representation outperforms traditional random forest proximities in tasks such as data imputation and provides outlier detection and visualization results consistent with the learned data geometry. ANDOM forests [1] are well-known, powerful predictors comprised of an ensemble of binary recursive was first defined by Leo Breiman as the proportion of decision trees. Random forests are easily adapted for both trees in which the observations reside in the same terminal classification and regression, are trivially parallelizable, can node [16].