Monz, Christof
Analyzing the Evaluation of Cross-Lingual Knowledge Transfer in Multilingual Language Models
Rajaee, Sara, Monz, Christof
Recent advances in training multilingual language models on large datasets seem to have shown promising results in knowledge transfer across languages and achieve high performance on downstream tasks. However, we question to what extent the current evaluation benchmarks and setups accurately measure zero-shot cross-lingual knowledge transfer. In this work, we challenge the assumption that high zero-shot performance on target tasks reflects high cross-lingual ability by introducing more challenging setups involving instances with multiple languages. Through extensive experiments and analysis, we show that the observed high performance of multilingual models can be largely attributed to factors not requiring the transfer of actual linguistic knowledge, such as task- and surface-level knowledge. More specifically, we observe what has been transferred across languages is mostly data artifacts and biases, especially for low-resource languages. Our findings highlight the overlooked drawbacks of existing cross-lingual test data and evaluation setups, calling for a more nuanced understanding of the cross-lingual capabilities of multilingual models.
Disentangling the Roles of Target-Side Transfer and Regularization in Multilingual Machine Translation
Meng, Yan, Monz, Christof
Multilingual Machine Translation (MMT) benefits from knowledge transfer across different language pairs. However, improvements in one-to-many translation compared to many-to-one translation are only marginal and sometimes even negligible. This performance discrepancy raises the question of to what extent positive transfer plays a role on the target-side for one-to-many MT. In this paper, we conduct a large-scale study that varies the auxiliary target side languages along two dimensions, i.e., linguistic similarity and corpus size, to show the dynamic impact of knowledge transfer on the main language pairs. We show that linguistically similar auxiliary target languages exhibit strong ability to transfer positive knowledge. With an increasing size of similar target languages, the positive transfer is further enhanced to benefit the main language pairs. Meanwhile, we find distant auxiliary target languages can also unexpectedly benefit main language pairs, even with minimal positive transfer ability. Apart from transfer, we show distant auxiliary target languages can act as a regularizer to benefit translation performance by enhancing the generalization and model inference calibration.
How Far Can 100 Samples Go? Unlocking Overall Zero-Shot Multilingual Translation via Tiny Multi-Parallel Data
Wu, Di, Tan, Shaomu, Meng, Yan, Stap, David, Monz, Christof
Zero-shot translation is an open problem, aiming to translate between language pairs unseen during training in Multilingual Machine Translation (MMT). A common, albeit resource-consuming, solution is to mine as many translation directions as possible to add to the parallel corpus. In this paper, we show that the zero-shot capability of an English-centric model can be easily enhanced by fine-tuning with a very small amount of multi-parallel data. For example, on the EC30 dataset, we show that up to +21.7 ChrF non-English overall improvements (870 directions) can be achieved by using only 100 multi-parallel samples, meanwhile preserving capability in English-centric directions. We further study the size effect of fine-tuning data and its transfer capabilities. Surprisingly, our empirical analysis shows that comparable overall improvements can be achieved even through fine-tuning in a small, randomly sampled direction set (10\%). Also, the resulting non-English performance is quite close to the upper bound (complete translation). Due to its high efficiency and practicality, we encourage the community 1) to consider the use of the fine-tuning method as a strong baseline for zero-shot translation and 2) to construct more comprehensive and high-quality multi-parallel data to cover real-world demand.
Beyond Shared Vocabulary: Increasing Representational Word Similarities across Languages for Multilingual Machine Translation
Wu, Di, Monz, Christof
Using a vocabulary that is shared across languages is common practice in Multilingual Neural Machine Translation (MNMT). In addition to its simple design, shared tokens play an important role in positive knowledge transfer, assuming that shared tokens refer to similar meanings across languages. However, when word overlap is small, especially due to different writing systems, transfer is inhibited. In this paper, we define word-level information transfer pathways via word equivalence classes and rely on graph networks to fuse word embeddings across languages. Our experiments demonstrate the advantages of our approach: 1) embeddings of words with similar meanings are better aligned across languages, 2) our method achieves consistent BLEU improvements of up to 2.3 points for high- and low-resource MNMT, and 3) less than 1.0\% additional trainable parameters are required with a limited increase in computational costs, while inference time remains identical to the baseline. We release the codebase to the community.
Viewing Knowledge Transfer in Multilingual Machine Translation Through a Representational Lens
Stap, David, Niculae, Vlad, Monz, Christof
We argue that translation quality alone is not a sufficient metric for measuring knowledge transfer in multilingual neural machine translation. To support this claim, we introduce Representational Transfer Potential (RTP), which measures representational similarities between languages. We show that RTP can measure both positive and negative transfer (interference), and find that RTP is strongly correlated with changes in translation quality, indicating that transfer does occur. Furthermore, we investigate data and language characteristics that are relevant for transfer, and find that multi-parallel overlap is an important yet under-explored feature. Based on this, we develop a novel training scheme, which uses an auxiliary similarity loss that encourages representations to be more invariant across languages by taking advantage of multi-parallel data. We show that our method yields increased translation quality for low- and mid-resource languages across multiple data and model setups.
Towards a Better Understanding of Variations in Zero-Shot Neural Machine Translation Performance
Tan, Shaomu, Monz, Christof
Multilingual Neural Machine Translation (MNMT) facilitates knowledge sharing but often suffers from poor zero-shot (ZS) translation qualities. While prior work has explored the causes of overall low ZS performance, our work introduces a fresh perspective: the presence of high variations in ZS performance. This suggests that MNMT does not uniformly exhibit poor ZS capability; instead, certain translation directions yield reasonable results. Through systematic experimentation involving 1,560 language directions spanning 40 languages, we identify three key factors contributing to high variations in ZS NMT performance: 1) target side translation capability 2) vocabulary overlap 3) linguistic properties. Our findings highlight that the target side translation quality is the most influential factor, with vocabulary overlap consistently impacting ZS performance. Additionally, linguistic properties, such as language family and writing system, play a role, particularly with smaller models. Furthermore, we suggest that the off-target issue is a symptom of inadequate ZS performance, emphasizing that zero-shot translation challenges extend beyond addressing the off-target problem. We release the data and models serving as a benchmark to study zero-shot for future research at https://github.com/Smu-Tan/ZS-NMT-Variations
Ask Language Model to Clean Your Noisy Translation Data
Bolding, Quinten, Liao, Baohao, Denis, Brandon James, Luo, Jun, Monz, Christof
Transformer models have demonstrated remarkable performance in neural machine translation (NMT). However, their vulnerability to noisy input poses a significant challenge in practical implementation, where generating clean output from noisy input is crucial. The MTNT dataset is widely used as a benchmark for evaluating the robustness of NMT models against noisy input. Nevertheless, its utility is limited due to the presence of noise in both the source and target sentences. To address this limitation, we focus on cleaning the noise from the target sentences in MTNT, making it more suitable as a benchmark for noise evaluation. Leveraging the capabilities of large language models (LLMs), we observe their impressive abilities in noise removal. For example, they can remove emojis while considering their semantic meaning. Additionally, we show that LLM can effectively rephrase slang, jargon, and profanities. The resulting datasets, called C-MTNT, exhibit significantly less noise in the target sentences while preserving the semantic integrity of the original sentences. Our human and GPT-4 evaluations also lead to a consistent conclusion that LLM performs well on this task. Lastly, experiments on C-MTNT showcased its effectiveness in evaluating the robustness of NMT models, highlighting the potential of advanced language models for data cleaning and emphasizing C-MTNT as a valuable resource.
Multilingual k-Nearest-Neighbor Machine Translation
Stap, David, Monz, Christof
k-nearest-neighbor machine translation has demonstrated remarkable improvements in machine translation quality by creating a datastore of cached examples. However, these improvements have been limited to high-resource language pairs, with large datastores, and remain a challenge for low-resource languages. In this paper, we address this issue by combining representations from multiple languages into a single datastore. Our results consistently demonstrate substantial improvements not only in low-resource translation quality (up to +3.6 BLEU), but also for high-resource translation quality (up to +0.5 BLEU). Our experiments show that it is possible to create multilingual datastores that are a quarter of the size, achieving a 5.3x speed improvement, by using linguistic similarities for datastore creation.
Make Pre-trained Model Reversible: From Parameter to Memory Efficient Fine-Tuning
Liao, Baohao, Tan, Shaomu, Monz, Christof
Parameter-efficient fine-tuning (PEFT) of pre-trained language models (PLMs) has emerged as a highly successful approach, with training only a small number of parameters without sacrificing performance and becoming the de-facto learning paradigm with the increasing size of PLMs. However, existing PEFT methods are not memory-efficient, because they still require caching most of the intermediate activations for the gradient calculation, akin to fine-tuning. One effective way to reduce the activation memory is to apply a reversible model, so the intermediate activations are not necessary to be cached and can be recomputed. Nevertheless, modifying a PLM to its reversible variant is not straightforward, since the reversible model has a distinct architecture from the currently released PLMs. In this paper, we first investigate what is a key factor for the success of existing PEFT methods, and realize that it's essential to preserve the PLM's starting point when initializing a PEFT method. With this finding, we propose memory-efficient fine-tuning (MEFT) that inserts adapters into a PLM, preserving the PLM's starting point and making it reversible without additional pre-training. We evaluate MEFT on the GLUE benchmark and five question-answering tasks with various backbones, BERT, RoBERTa, BART and OPT. MEFT significantly reduces the activation memory up to 84% of full fine-tuning with a negligible amount of trainable parameters. Moreover, MEFT achieves the same score on GLUE and a comparable score on the question-answering tasks as full fine-tuning. A similar finding is also observed for the image classification task.
UvA-MT's Participation in the WMT23 General Translation Shared Task
Wu, Di, Tan, Shaomu, Stap, David, Araabi, Ali, Monz, Christof
This paper describes the UvA-MT's submission to the WMT 2023 shared task on general machine translation. We participate in the constrained track in two directions: English <-> Hebrew. In this competition, we show that by using one model to handle bidirectional tasks, as a minimal setting of Multilingual Machine Translation (MMT), it is possible to achieve comparable results with that of traditional bilingual translation for both directions. By including effective strategies, like back-translation, re-parameterized embedding table, and task-oriented fine-tuning, we obtained competitive final results in the automatic evaluation for both English -> Hebrew and Hebrew -> English directions.