Monemi, Mehdi
Highly Dynamic and Flexible Spatio-Temporal Spectrum Management with AI-Driven O-RAN: A Multi-Granularity Marketplace Framework
Rasti, Mehdi, Ataeebojd, Elaheh, Taskooh, Shiva Kazemi, Monemi, Mehdi, Razmi, Siavash, Latva-aho, Matti
Current spectrum-sharing frameworks struggle with adaptability, often being either static or insufficiently dynamic. They primarily emphasize temporal sharing while overlooking spatial and spectral dimensions. We propose an adaptive, AI-driven spectrum-sharing framework within the O-RAN architecture, integrating discriminative and generative AI (GenAI) to forecast spectrum needs across multiple timescales and spatial granularities. A marketplace model, managed by an authorized spectrum broker, enables operators to trade spectrum dynamically, balancing static assignments with real-time trading. GenAI enhances traffic prediction, spectrum estimation, and allocation, optimizing utilization while reducing costs. This modular, flexible approach fosters operator collaboration, maximizing efficiency and revenue. A key research challenge is refining allocation granularity and spatio-temporal dynamics beyond existing models.
Near-Field Spot Beamfocusing: A Correlation-Aware Transfer Learning Approach
Fallah, Mohammad Amir, Monemi, Mehdi, Rasti, Mehdi, Latva-Aho, Matti
3D spot beamfocusing (SBF), in contrast to conventional angular-domain beamforming, concentrates radiating power within very small volume in both radial and angular domains in the near-field zone. Recently the implementation of channel-state-information (CSI)-independent machine learning (ML)-based approaches have been developed for effective SBF using extremely-largescale-programable-metasurface (ELPMs). These methods involve dividing the ELPMs into subarrays and independently training them with Deep Reinforcement Learning to jointly focus the beam at the Desired Focal Point (DFP). This paper explores near-field SBF using ELPMs, addressing challenges associated with lengthy training times resulting from independent training of subarrays. To achieve a faster CSIindependent solution, inspired by the correlation between the beamfocusing matrices of the subarrays, we leverage transfer learning techniques. First, we introduce a novel similarity criterion based on the Phase Distribution Image of subarray apertures. Then we devise a subarray policy propagation scheme that transfers the knowledge from trained to untrained subarrays. We further enhance learning by introducing Quasi-Liquid-Layers as a revised version of the adaptive policy reuse technique. We show through simulations that the proposed scheme improves the training speed about 5 times. Furthermore, for dynamic DFP management, we devised a DFP policy blending process, which augments the convergence rate up to 8-fold.