Mohammad Norouzi
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas, George Tucker, Roger B. Grosse, Mohammad Norouzi
Posterior collapse in Variational Autoencoders (VAEs) arises when the variational posterior distribution closely matches the prior for a subset of latent variables. This paper presents a simple and intuitive explanation for posterior collapse through the analysis of linear VAEs and their direct correspondence with Probabilistic PCA (pPCA). We explain how posterior collapse may occur in pPCA due to local maxima in the log marginal likelihood. Unexpectedly, we prove that the ELBO objective for the linear VAE does not introduce additional spurious local maxima relative to log marginal likelihood. We show further that training a linear VAE with exact variational inference recovers an identifiable global maximum corresponding to the principal component directions. Empirically, we find that our linear analysis is predictive even for high-capacity, non-linear VAEs and helps explain the relationship between the observation noise, local maxima, and posterior collapse in deep Gaussian VAEs.
Reward Augmented Maximum Likelihood for Neural Structured Prediction
Mohammad Norouzi, Samy Bengio, zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans
A key problem in structured output prediction is direct optimization of the task reward function that matters for test evaluation. This paper presents a simple and computationally efficient approach to incorporate task reward into a maximum likelihood framework. By establishing a link between the log-likelihood and expected reward objectives, we show that an optimal regularized expected reward is achieved when the conditional distribution of the outputs given the inputs is proportional to their exponentiated scaled rewards. Accordingly, we present a framework to smooth the predictive probability of the outputs using their corresponding rewards. We optimize the conditional log-probability of augmented outputs that are sampled proportionally to their exponentiated scaled rewards. Experiments on neural sequence to sequence models for speech recognition and machine translation show notable improvements over a maximum likelihood baseline by using reward augmented maximum likelihood (RML), where the rewards are defined as the negative edit distance between the outputs and the ground truth labels.
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans
We establish a new connection between value and policy based reinforcement learning (RL) based on a relationship between softmax temporal value consistency and policy optimality under entropy regularization. Specifically, we show that softmax consistent action values correspond to optimal entropy regularized policy probabilities along any action sequence, regardless of provenance. From this observation, we develop a new RL algorithm, Path Consistency Learning (PCL), that minimizes a notion of soft consistency error along multi-step action sequences extracted from both on-and off-policy traces. We examine the behavior of PCL in different scenarios and show that PCL can be interpreted as generalizing both actor-critic and Q-learning algorithms. We subsequently deepen the relationship by showing how a single model can be used to represent both a policy and the corresponding softmax state values, eliminating the need for a separate critic. The experimental evaluation demonstrates that PCL significantly outperforms strong actor-critic and Q-learning baselines across several benchmarks.
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning
Supasorn Suwajanakorn, Noah Snavely, Jonathan J. Tompson, Mohammad Norouzi
This paper presents KeypointNet, an end-to-end geometric reasoning framework to learn an optimal set of category-specific 3D keypoints, along with their detectors. Given a single image, KeypointNet extracts 3D keypoints that are optimized for a downstream task. We demonstrate this framework on 3D pose estimation by proposing a differentiable objective that seeks the optimal set of keypoints for recovering the relative pose between two views of an object. Our model discovers geometrically and semantically consistent keypoints across viewing angles and instances of an object category. Importantly, we find that our end-to-end framework using no ground-truth keypoint annotations outperforms a fully supervised baseline using the same neural network architecture on the task of pose estimation. The discovered 3D keypoints on the car, chair, and plane categories of ShapeNet [6] are visualized at keypointnet.github.io.
Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing
Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, Ni Lao
We present Memory Augmented Policy Optimization (MAPO), a simple and novel way to leverage a memory buffer of promising trajectories to reduce the variance of policy gradient estimates. MAPO is applicable to deterministic environments with discrete actions, such as structured prediction and combinatorial optimization. Our key idea is to express the expected return objective as a weighted sum of two terms: an expectation over the high-reward trajectories inside a memory buffer, and a separate expectation over trajectories outside of the buffer. To design an efficient algorithm based on this idea, we propose: (1) memory weight clipping to accelerate and stabilize training; (2) systematic exploration to discover high-reward trajectories; (3) distributed sampling from inside and outside of the memory buffer to speed up training. MAPO improves the sample efficiency and robustness of policy gradient, especially on tasks with sparse rewards. We evaluate MAPO on weakly supervised program synthesis from natural language (semantic parsing).
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans
We establish a new connection between value and policy based reinforcement learning (RL) based on a relationship between softmax temporal value consistency and policy optimality under entropy regularization. Specifically, we show that softmax consistent action values correspond to optimal entropy regularized policy probabilities along any action sequence, regardless of provenance. From this observation, we develop a new RL algorithm, Path Consistency Learning (PCL), that minimizes a notion of soft consistency error along multi-step action sequences extracted from both on-and off-policy traces. We examine the behavior of PCL in different scenarios and show that PCL can be interpreted as generalizing both actor-critic and Q-learning algorithms. We subsequently deepen the relationship by showing how a single model can be used to represent both a policy and the corresponding softmax state values, eliminating the need for a separate critic. The experimental evaluation demonstrates that PCL significantly outperforms strong actor-critic and Q-learning baselines across several benchmarks.
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.