Mitra, Kaushik
Acela: Predictable Datacenter-level Maintenance Job Scheduling
Ding, Yi, Gao, Aijia, Ryden, Thibaud, Mitra, Kaushik, Kalmanje, Sukumar, Golany, Yanai, Carbin, Michael, Hoffmann, Henry
Datacenter operators ensure fair and regular server maintenance by using automated processes to schedule maintenance jobs to complete within a strict time budget. Automating this scheduling problem is challenging because maintenance job duration varies based on both job type and hardware. While it is tempting to use prior machine learning techniques for predicting job duration, we find that the structure of the maintenance job scheduling problem creates a unique challenge. In particular, we show that prior machine learning methods that produce the lowest error predictions do not produce the best scheduling outcomes due to asymmetric costs. Specifically, underpredicting maintenance job duration has results in more servers being taken offline and longer server downtime than overpredicting maintenance job duration. The system cost of underprediction is much larger than that of overprediction. We present Acela, a machine learning system for predicting maintenance job duration, which uses quantile regression to bias duration predictions toward overprediction. We integrate Acela into a maintenance job scheduler and evaluate it on datasets from large-scale, production datacenters. Compared to machine learning based predictors from prior work, Acela reduces the number of servers that are taken offline by 1.87-4.28X, and reduces the server offline time by 1.40-2.80X.
Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation
Shankaranarayana, Sharath M, Ram, Keerthi, Mitra, Kaushik, Sivaprakasam, Mohanasankar
Abstract--Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this work, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labelled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising.
Neural Decoder for Topological Codes using Pseudo-Inverse of Parity Check Matrix
Chinni, Chaitanya, Kulkarni, Abhishek, Pai, Dheeraj M., Mitra, Kaushik, Sarvepalli, Pradeep Kiran
Recent developments in the field of deep learning have motivated many researchers to apply these methods to problems in quantum information. Torlai and Melko first proposed a decoder for surface codes based on neural networks. Since then, many other researchers have applied neural networks to study a variety of problems in the context of decoding. An important development in this regard was due to Varsamopoulos et al. who proposed a two-step decoder using neural networks. Subsequent work of Maskara et al. used the same concept for decoding for various noise models. We propose a similar two-step neural decoder using inverse parity-check matrix for topological color codes. We show that it outperforms the state-of-the-art performance of non-neural decoders for independent Pauli errors noise model on a 2D hexagonal color code. Our final decoder is independent of the noise model and achieves a threshold of $10 \%$. Our result is comparable to the recent work on neural decoder for quantum error correction by Maskara et al.. It appears that our decoder has significant advantages with respect to training cost and complexity of the network for higher lengths when compared to that of Maskara et al.. Our proposed method can also be extended to arbitrary dimension and other stabilizer codes.
Large-Scale Matrix Factorization with Missing Data under Additional Constraints
Mitra, Kaushik, Sheorey, Sameer, Chellappa, Rama
Matrix factorization in the presence of missing data is at the core of many computer vision problems such as structure from motion (SfM), non-rigid SfM and photometric stereo. We formulate the problem of matrix factorization with missing data as a low-rank semidefinite program (LRSDP) with the advantage that: $1)$ an efficient quasi-Newton implementation of the LRSDP enables us to solve large-scale factorization problems, and $2)$ additional constraints such as ortho-normality, required in orthographic SfM, can be directly incorporated in the new formulation. Our empirical evaluations suggest that, under the conditions of matrix completion theory, the proposed algorithm finds the optimal solution, and also requires fewer observations compared to the current state-of-the-art algorithms. We further demonstrate the effectiveness of the proposed algorithm in solving the affine SfM problem, non-rigid SfM and photometric stereo problems.