Mishra, Siddhartha
Physics Informed Neural Networks for Simulating Radiative Transfer
Mishra, Siddhartha, Molinaro, Roberto
We propose a novel machine learning algorithm for simulating radiative transfer. Our algorithm is based on physics informed neural networks (PINNs), which are trained by minimizing the residual of the underlying radiative tranfer equations. We present extensive experiments and theoretical error estimates to demonstrate that PINNs provide a very easy to implement, fast, robust and accurate method for simulating radiative transfer. We also present a PINN based algorithm for simulating inverse problems for radiative transfer efficiently.
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
Mishra, Siddhartha, Rusch, T. Konstantin
We propose a deep supervised learning algorithm based on low-discrepancy sequences as the training set. By a combination of theoretical arguments and extensive numerical experiments we demonstrate that the proposed algorithm significantly outperforms standard deep learning algorithms that are based on randomly chosen training data, for problems in moderately high dimensions. The proposed algorithm provides an efficient method for building inexpensive surrogates for many underlying maps in the context of scientific computing.
A Multi-level procedure for enhancing accuracy of machine learning algorithms
Lye, Kjetil O., Mishra, Siddhartha, Molinaro, Roberto
We propose a multi-level method to increase the accuracy of machine learning algorithms for approximating observables in scientific computing, particularly those that arise in systems modeled by differential equations. The algorithm relies on judiciously combining a large number of computationally cheap training data on coarse resolutions with a few expensive training samples on fine grid resolutions. Theoretical arguments for lowering the generalization error, based on reducing the variance of the underlying maps, are provided and numerical evidence, indicating significant gains over underlying single-level machine learning algorithms, are presented. Moreover, we also apply the multi-level algorithm in the context of forward uncertainty quantification and observe a considerable speed-up over competing algorithms.
Deep learning observables in computational fluid dynamics
Lye, Kjetil O., Mishra, Siddhartha, Ray, Deep
Many large scale problems in computational fluid dynamics such as uncertainty quantification, Bayesian inversion, data assimilation and PDE constrained optimization are considered very challenging computationally as they require a large number of expensive (forward) numerical solutions of the corresponding PDEs. We propose a machine learning algorithm, based on deep artificial neural networks, that learns the underlying input parameters to observable map from a few training samples (computed realizations of this map). By a judicious combination of theoretical arguments and empirical observations, we find suitable network architectures and training hyperparameters that result in robust and efficient neural network approximations of the parameters to observable map. Numerical experiments for realistic high dimensional test problems, demonstrate that even with approximately 100 training samples, the resulting neural networks have a prediction error of less than one to two percent, at a computational cost which is several orders of magnitude lower than the cost of the underlying PDE solver. Moreover, we combine the proposed deep learning algorithm with Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods to efficiently compute uncertainty propagation for nonlinear PDEs. Under the assumption that the underlying neural networks generalize well, we prove that the deep learning MC and QMC algorithms are guaranteed to be faster than the baseline (quasi-) Monte Carlo methods. Numerical experiments demonstrating one to two orders of magnitude speed up over baseline QMC and MC algorithms, for the intricate problem of computing probability distributions of the observable, are also presented.