Goto

Collaborating Authors

 Mishra, Shubhanshu


Revisiting gender bias research in bibliometrics: Standardizing methodological variability using Scholarly Data Analysis (SoDA) Cards

arXiv.org Artificial Intelligence

Gender biases in scholarly metrics remain a persistent concern, despite numerous bibliometric studies exploring their presence and absence across productivity, impact, acknowledgment, and self-citations. However, methodological inconsistencies, particularly in author name disambiguation and gender identification, limit the reliability and comparability of these studies, potentially perpetuating misperceptions and hindering effective interventions. A review of 70 relevant publications over the past 12 years reveals a wide range of approaches, from name-based and manual searches to more algorithmic and gold-standard methods, with no clear consensus on best practices. This variability, compounded by challenges such as accurately disambiguating Asian names and managing unassigned gender labels, underscores the urgent need for standardized and robust methodologies. To address this critical gap, we propose the development and implementation of ``Scholarly Data Analysis (SoDA) Cards." These cards will provide a structured framework for documenting and reporting key methodological choices in scholarly data analysis, including author name disambiguation and gender identification procedures. By promoting transparency and reproducibility, SoDA Cards will facilitate more accurate comparisons and aggregations of research findings, ultimately supporting evidence-informed policymaking and enabling the longitudinal tracking of analytical approaches in the study of gender and other social biases in academia.


Beyond Binary Gender Labels: Revealing Gender Biases in LLMs through Gender-Neutral Name Predictions

arXiv.org Artificial Intelligence

Name-based gender prediction has traditionally categorized individuals as either female or male based on their names, using a binary classification system. That binary approach can be problematic in the cases of gender-neutral names that do not align with any one gender, among other reasons. Relying solely on binary gender categories without recognizing gender-neutral names can reduce the inclusiveness of gender prediction tasks. We introduce an additional gender category, i.e., "neutral", to study and address potential gender biases in Large Language Models (LLMs). We evaluate the performance of several foundational and large language models in predicting gender based on first names only. Additionally, we investigate the impact of adding birth years to enhance the accuracy of gender prediction, accounting for shifting associations between names and genders over time. Our findings indicate that most LLMs identify male and female names with high accuracy (over 80%) but struggle with gender-neutral names (under 40%), and the accuracy of gender prediction is higher for English-based first names than non-English names. The experimental results show that incorporating the birth year does not improve the overall accuracy of gender prediction, especially for names with evolving gender associations. We recommend using caution when applying LLMs for gender identification in downstream tasks, particularly when dealing with non-binary gender labels.


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.


PyTAIL: Interactive and Incremental Learning of NLP Models with Human in the Loop for Online Data

arXiv.org Artificial Intelligence

Online data streams make training machine learning models hard because of distribution shift and new patterns emerging over time. For natural language processing (NLP) tasks that utilize a collection of features based on lexicons and rules, it is important to adapt these features to the changing data. To address this challenge we introduce PyTAIL, a python library, which allows a human in the loop approach to actively train NLP models. PyTAIL enhances generic active learning, which only suggests new instances to label by also suggesting new features like rules and lexicons to label. Furthermore, PyTAIL is flexible enough for users to accept, reject, or update rules and lexicons as the model is being trained. Finally, we simulate the performance of PyTAIL on existing social media benchmark datasets for text classification. We compare various active learning strategies on these benchmarks. The model closes the gap with as few as 10% of the training data. Finally, we also highlight the importance of tracking evaluation metric on remaining data (which is not yet merged with active learning) alongside the test dataset. This highlights the effectiveness of the model in accurately annotating the remaining dataset, which is especially suitable for batch processing of large unlabelled corpora. PyTAIL will be available at https://github.com/socialmediaie/pytail.


NTULM: Enriching Social Media Text Representations with Non-Textual Units

arXiv.org Artificial Intelligence

On social media, additional context is often present in the form of annotations and meta-data such as the post's author, mentions, Hashtags, and hyperlinks. We refer to these annotations as Non-Textual Units (NTUs). We posit that NTUs provide social context beyond their textual semantics and leveraging these units can enrich social media text representations. In this work we construct an NTU-centric social heterogeneous network to co-embed NTUs. We then principally integrate these NTU embeddings into a large pretrained language model by fine-tuning with these additional units. This adds context to noisy short-text social media. Experiments show that utilizing NTU-augmented text representations significantly outperforms existing text-only baselines by 2-5\% relative points on many downstream tasks highlighting the importance of context to social media NLP. We also highlight that including NTU context into the initial layers of language model alongside text is better than using it after the text embedding is generated. Our work leads to the generation of holistic general purpose social media content embedding.


Exploring multi-task multi-lingual learning of transformer models for hate speech and offensive speech identification in social media

arXiv.org Artificial Intelligence

Thus, social media platforms are often held responsible for framing the views and opinions of a large number of people (Duggan et al., 2017). However, this freedom to voice our opinion has been challenged by the increase in the use of hate speech (Mondal et al., 2017). The anonymity of the internet grants people the power to completely change the context of a discussion and suppress a person's personal opinion (Sticca and Perren, 2013). These hateful posts and comments not only affect the society at a micro scale but also at a global level by influencing people's views regarding important global events like elections, and protests (Duggan et al., 2017). Given the volume of online communication happening on various social media platforms and the need for more fruitful communication, there is a growing need to automate the detection of hate speech. For the scope of this paper we adopt the definition of hate speech and offensive speech as defined in the Mandl et al. (2019) as "insulting, hurtful, derogatory, or obscene content directed from one person to another person" (quoted from (Mandl et al., 2019)). In order to automate hate speech detection the Natural Language Processing (NLP) community has made significant progress which has been accelerated by organization of numerous shared tasks aimed at identifying hate speech (Mandl et al., 2019; Kumar et al., 2020, 2018).