Not enough data to create a plot.
Try a different view from the menu above.
Mishra, Bamdev
Riemannian block SPD coupling manifold and its application to optimal transport
Han, Andi, Mishra, Bamdev, Jawanpuria, Pratik, Gao, Junbin
Optimal transport (OT) has seen its popularity in various fields of applications. We start by observing that the OT problem can be viewed as an instance of a general symmetric positive definite (SPD) matrix-valued OT problem, where the cost, the marginals, and the coupling are represented as block matrices and each component block is a SPD matrix. The summation of row blocks and column blocks in the coupling matrix are constrained by the given block-SPD marginals. We endow the set of such block-coupling matrices with a novel Riemannian manifold structure. This allows to exploit the versatile Riemannian optimization framework to solve generic SPD matrix-valued OT problems. We illustrate the usefulness of the proposed approach in several applications.
Generalized Bures-Wasserstein Geometry for Positive Definite Matrices
Han, Andi, Mishra, Bamdev, Jawanpuria, Pratik, Gao, Junbin
This paper proposes a generalized Bures-Wasserstein (BW) Riemannian geometry for the manifold of symmetric positive definite matrices. We explore the generalization of the BW geometry in three different ways: 1) by generalizing the Lyapunov operator in the metric, 2) by generalizing the orthogonal Procrustes distance, and 3) by generalizing the Wasserstein distance between the Gaussians. We show that they all lead to the same geometry. The proposed generalization is parameterized by a symmetric positive definite matrix $\mathbf{M}$ such that when $\mathbf{M} = \mathbf{I}$, we recover the BW geometry. We derive expressions for the distance, geodesic, exponential/logarithm maps, Levi-Civita connection, and sectional curvature under the generalized BW geometry. We also present applications and experiments that illustrate the efficacy of the proposed geometry.
Optimal transport framework for efficient prototype selection
Gurumoorthy, Karthik S., Jawanpuria, Pratik, Mishra, Bamdev
Summarizing data via representative examples is an important problem in several machine learning applications where human understanding of the learning models and underlying data distribution is essential for decision making. In this work, we develop an optimal transport (OT) based framework to select informative prototypical examples that best represent a given target dataset. We model the prototype selection problem as learning a sparse (empirical) probability distribution having minimum OT distance from the target distribution. The learned probability measure supported on the chosen prototypes directly corresponds to their importance in representing and summarizing the target data. We show that our objective function enjoys a key property of submodularity and propose a parallelizable greedy method that is both computationally fast and possess deterministic approximation guarantees. Empirical results on several real world benchmarks illustrate the efficacy of our approach.
Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition
Yelundur, Anil R., Chaoji, Vineet, Mishra, Bamdev
Product reviews and ratings on e-commerce websites provide customers with detailed insights about various aspects of the product such as quality, usefulness, etc. Since they influence customers' buying decisions, product reviews have become a fertile ground for abuse by sellers (colluding with reviewers) to promote their own products or to tarnish the reputation of competitor's products. In this paper, our focus is on detecting such abusive entities (both sellers and reviewers) by applying tensor decomposition on the product reviews data. While tensor decomposition is mostly unsupervised, we formulate our problem as a semi-supervised binary multi-target tensor decomposition, to take advantage of currently known abusive entities. We empirically show that our multi-target semi-supervised model achieves higher precision and recall in detecting abusive entities as compared to unsupervised techniques. Finally, we show that our proposed stochastic partial natural gradient inference for our model empirically achieves faster convergence than stochastic gradient and Online-EM with sufficient statistics.
Low-rank approximations of hyperbolic embeddings
Jawanpuria, Pratik, Meghwanshi, Mayank, Mishra, Bamdev
The hyperbolic manifold is a smooth manifold of negative constant curvature. While the hyperbolic manifold is well-studied in the literature, it has gained interest in the machine learning and natural language processing communities lately due to its usefulness in modeling continuous hierarchies. Tasks with hierarchical structures are ubiquitous in those fields and there is a general interest to learning hyperbolic representations or embeddings of such tasks. Additionally, these embeddings of related tasks may also share a low-rank subspace. In this work, we propose to learn hyperbolic embeddings such that they also lie in a low-dimensional subspace. In particular, we consider the problem of learning a low-rank factorization of hyperbolic embeddings. We cast these problems as manifold optimization problems and propose computationally efficient algorithms. Empirical results illustrate the efficacy of the proposed approach.
Riemannian joint dimensionality reduction and dictionary learning on symmetric positive definite manifold
Kasai, Hiroyuki, Mishra, Bamdev
Dictionary leaning (DL) and dimensionality reduction (DR) are powerful tools to analyze high-dimensional noisy signals. This paper presents a proposal of a novel Riemannian joint dimensionality reduction and dictionary learning (R-JDRDL) on symmetric positive definite (SPD) manifolds for classification tasks. The joint learning considers the interaction between dimensionality reduction and dictionary learning procedures by connecting them into a unified framework. We exploit a Riemannian optimization framework for solving DL and DR problems jointly. Finally, we demonstrate that the proposed R-JDRDL outperforms existing state-of-the-arts algorithms when used for image classification tasks.
Adaptive stochastic gradient algorithms on Riemannian manifolds
Kasai, Hiroyuki, Jawanpuria, Pratik, Mishra, Bamdev
Adaptive stochastic gradient algorithms in the Euclidean space have attracted much attention lately. Such explorations on Riemannian manifolds, on the other hand, are relatively new, limited, and challenging. This is because of the intrinsic non-linear structure of the underlying manifold and the absence of a canonical coordinate system. In machine learning applications, however, most manifolds of interest are represented as matrices with notions of row and column subspaces. In addition, the implicit manifold-related constraints may also lie on such subspaces. For example, the Grassmann manifold is the set of column subspaces. To this end, such a rich structure should not be lost by transforming matrices into just a stack of vectors while developing optimization algorithms on manifolds. We propose novel stochastic gradient algorithms for problems on Riemannian manifolds by adapting the row and column subspaces of gradients. Our algorithms are provably convergent and they achieve the convergence rate of order ${O}(\log (T)/\sqrt{T})$, where $T$ is the number of iterations. Our experiments illustrate that the proposed algorithms outperform existing Riemannian adaptive stochastic algorithms.
A Dual Framework for Low-rank Tensor Completion
Nimishakavi, Madhav, Jawanpuria, Pratik Kumar, Mishra, Bamdev
One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.
Inexact trust-region algorithms on Riemannian manifolds
Kasai, Hiroyuki, Mishra, Bamdev
We consider an inexact variant of the popular Riemannian trust-region algorithm for structured big-data minimization problems. The proposed algorithm approximates the gradient and the Hessian in addition to the solution of a trust-region sub-problem. Addressing large-scale finite-sum problems, we specifically propose sub-sampled algorithms with a fixed bound on sub-sampled Hessian and gradient sizes, where the gradient and Hessian are computed by a random sampling technique. Numerical evaluations demonstrate that the proposed algorithms outperform state-of-the-art Riemannian deterministic and stochastic gradient algorithms across different applications.
Inexact trust-region algorithms on Riemannian manifolds
Kasai, Hiroyuki, Mishra, Bamdev
We consider an inexact variant of the popular Riemannian trust-region algorithm for structured big-data minimization problems. The proposed algorithm approximates the gradient and the Hessian in addition to the solution of a trust-region sub-problem. Addressing large-scale finite-sum problems, we specifically propose sub-sampled algorithms with a fixed bound on sub-sampled Hessian and gradient sizes, where the gradient and Hessian are computed by a random sampling technique. Numerical evaluations demonstrate that the proposed algorithms outperform state-of-the-art Riemannian deterministic and stochastic gradient algorithms across different applications.