Goto

Collaborating Authors

 Mirzaee, Roshanak


Disentangling Extraction and Reasoning in Multi-hop Spatial Reasoning

arXiv.org Artificial Intelligence

Spatial reasoning over text is challenging as the models not only need to extract the direct spatial information from the text but also reason over those and infer implicit spatial relations. Recent studies highlight the struggles even large language models encounter when it comes to performing spatial reasoning over text. In this paper, we explore the potential benefits of disentangling the processes of information extraction and reasoning in models to address this challenge. To explore this, we design various models that disentangle extraction and reasoning(either symbolic or neural) and compare them with state-of-the-art(SOTA) baselines with no explicit design for these parts. Our experimental results consistently demonstrate the efficacy of disentangling, showcasing its ability to enhance models' generalizability within realistic data domains.


GLUECons: A Generic Benchmark for Learning Under Constraints

arXiv.org Artificial Intelligence

Recent research has shown that integrating domain knowledge into deep learning architectures is effective -- it helps reduce the amount of required data, improves the accuracy of the models' decisions, and improves the interpretability of models. However, the research community is missing a convened benchmark for systematically evaluating knowledge integration methods. In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision. In all cases, we model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints. We report the results of these models using a new set of extended evaluation criteria in addition to the task performances for a more in-depth analysis. This effort provides a framework for a more comprehensive and systematic comparison of constraint integration techniques and for identifying related research challenges. It will facilitate further research for alleviating some problems of state-of-the-art neural models.


Generalizable Neuro-symbolic Systems for Commonsense Question Answering

arXiv.org Artificial Intelligence

This chapter illustrates how suitable neuro-symbolic models for language understanding can enable domain generalizability and robustness in downstream tasks. Different methods for integrating neural language models and knowledge graphs are discussed. The situations in which this combination is most appropriate are characterized, including quantitative evaluation and qualitative error analysis on a variety of commonsense question answering benchmark datasets.


SpartQA: : A Textual Question Answering Benchmark for Spatial Reasoning

arXiv.org Artificial Intelligence

This paper proposes a question-answering (QA) benchmark for spatial reasoning on natural language text which contains more realistic spatial phenomena not covered by prior work and is challenging for state-of-the-art language models (LM). We propose a distant supervision method to improve on this task. Specifically, we design grammar and reasoning rules to automatically generate a spatial description of visual scenes and corresponding QA pairs. Experiments show that further pretraining LMs on these automatically generated data significantly improves LMs' capability on spatial understanding, which in turn helps to better solve two external datasets, bAbI, and boolQ. We hope that this work can foster investigations into more sophisticated models for spatial reasoning over text.


Latent Alignment of Procedural Concepts in Multimodal Recipes

arXiv.org Artificial Intelligence

We propose a novel alignment mechanism to deal with procedural reasoning on a newly released multimodal QA dataset, named RecipeQA. Our model is solving the textual cloze task which is a reading comprehension on a recipe containing images and instructions. We exploit the power of attention networks, cross-modal representations, and a latent alignment space between instructions and candidate answers to solve the problem. We introduce constrained max-pooling which refines the max-pooling operation on the alignment matrix to impose disjoint constraints among the outputs of the model. Our evaluation result indicates a 19\% improvement over the baselines.