Goto

Collaborating Authors

 Ming-Ming Cheng


Self-Erasing Network for Integral Object Attention

Neural Information Processing Systems

Recently, adversarial erasing for weakly-supervised object attention has been deeply studied due to its capability in localizing integral object regions. However, such a strategy raises one key problem that attention regions will gradually expand to non-object regions as training iterations continue, which significantly decreases the quality of the produced attention maps. To tackle such an issue as well as promote the quality of object attention, we introduce a simple yet effective Self-Erasing Network (SeeNet) to prohibit attentions from spreading to unexpected background regions. In particular, SeeNet leverages two self-erasing strategies to encourage networks to use reliable object and background cues for learning to attention. In this way, integral object regions can be effectively highlighted without including much more background regions. To test the quality of the generated attention maps, we employ the mined object regions as heuristic cues for learning semantic segmentation models. Experiments on Pascal VOC well demonstrate the superiority of our SeeNet over other state-of-the-art methods.



Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video

Neural Information Processing Systems

Recent work has shown that CNN-based depth and ego-motion estimators can be learned using unlabelled monocular videos. However, the performance is limited by unidentified moving objects that violate the underlying static scene assumption in geometric image reconstruction. More significantly, due to lack of proper constraints, networks output scale-inconsistent results over different samples, i.e., the ego-motion network cannot provide full camera trajectories over a long video sequence because of the per-frame scale ambiguity. This paper tackles these challenges by proposing a geometry consistency loss for scale-consistent predictions and an induced self-discovered mask for handling moving objects and occlusions. Since we do not leverage multi-task learning like recent works, our framework is much simpler and more efficient. Comprehensive evaluation results demonstrate that our depth estimator achieves the state-of-the-art performance on the KITTI dataset. Moreover, we show that our ego-motion network is able to predict a globally scale-consistent camera trajectory for long video sequences, and the resulting visual odometry accuracy is competitive with the recent model that is trained using stereo videos. To the best of our knowledge, this is the first work to show that deep networks trained using unlabelled monocular videos can predict globally scale-consistent camera trajectories over a long video sequence.


Self-Erasing Network for Integral Object Attention

Neural Information Processing Systems

Recently, adversarial erasing for weakly-supervised object attention has been deeply studied due to its capability in localizing integral object regions. However, such a strategy raises one key problem that attention regions will gradually expand to non-object regions as training iterations continue, which significantly decreases the quality of the produced attention maps. To tackle such an issue as well as promote the quality of object attention, we introduce a simple yet effective Self-Erasing Network (SeeNet) to prohibit attentions from spreading to unexpected background regions. In particular, SeeNet leverages two self-erasing strategies to encourage networks to use reliable object and background cues for learning to attention. In this way, integral object regions can be effectively highlighted without including much more background regions. To test the quality of the generated attention maps, we employ the mined object regions as heuristic cues for learning semantic segmentation models. Experiments on Pascal VOC well demonstrate the superiority of our SeeNet over other state-of-the-art methods.