Goto

Collaborating Authors

 Mesana, Patrick


WaKA: Data Attribution using K-Nearest Neighbors and Membership Privacy Principles

arXiv.org Artificial Intelligence

In this paper, we introduce WaKA (Wasserstein K-nearest-neighbors Attribution), a novel attribution method that leverages principles from the LiRA (Likelihood Ratio Attack) framework and k-nearest neighbors classifiers (k-NN). WaKA efficiently measures the contribution of individual data points to the model's loss distribution, analyzing every possible k-NN that can be constructed using the training set, without requiring to sample subsets of the training set. WaKA is versatile and can be used a posteriori as a membership inference attack (MIA) to assess privacy risks or a priori for privacy influence measurement and data valuation. Thus, WaKA can be seen as bridging the gap between data attribution and membership inference attack (MIA) by providing a unified framework to distinguish between a data point's value and its privacy risk. For instance, we have shown that self-attribution values are more strongly correlated with the attack success rate than the contribution of a point to the model generalization. WaKA's different usage were also evaluated across diverse real-world datasets, demonstrating performance very close to LiRA when used as an MIA on k-NN classifiers, but with greater computational efficiency. Additionally, WaKA shows greater robustness than Shapley Values for data minimization tasks (removal or addition) on imbalanced datasets.


Generating synthetic transactional profiles

arXiv.org Artificial Intelligence

Financial institutions use clients' payment transactions in numerous banking applications. Transactions are very personal and rich in behavioural patterns, often unique to individuals, which make them equivalent to personally identifiable information in some cases. In this paper, we generate synthetic transactional profiles using machine learning techniques with the goal to preserve both data utility and privacy. A challenge we faced was to deal with sparse vectors due to the few spending categories a client uses compared to all the ones available. We measured data utility by calculating common insights used by the banking industry on both the original and the synthetic data-set. Our approach shows that neural network models can generate valuable synthetic data in such context. Finally, we tried privacy-preserving techniques and observed its effect on models' performances.