Goto

Collaborating Authors

 Merchant, Arif


A Practical Cross-Layer Approach for ML-Driven Storage Placement in Warehouse-Scale Computers

arXiv.org Artificial Intelligence

Storage systems account for a major portion of the total cost of ownership (TCO) of warehouse-scale computers, and thus have a major impact on the overall system's efficiency. Machine learning (ML)-based methods for solving key problems in storage system efficiency, such as data placement, have shown significant promise. However, there are few known practical deployments of such methods. Studying this problem in the context of real-world hyperscale data center deployments at Google, we identify a number of challenges that we believe cause this lack of practical adoption. Specifically, prior work assumes a monolithic model that resides entirely within the storage layer, an unrealistic assumption in real-world data center deployments. We propose a cross-layer approach that moves ML out of the storage system and performs it in the application running on top of it, co-designed with a scheduling algorithm at the storage layer that consumes predictions from these application-level models. This approach combines small, interpretable models with a co-designed heuristic that adapts to different online environments. We build a proof-of-concept of this approach in a production distributed computation framework at Google. Evaluations in a test deployment and large-scale simulation studies using production traces show improvements of as much as 3.47x in TCO savings compared to state of the art baselines. We believe this work represents a significant step towards more practical ML-driven storage placement in warehouse-scale computers.


Enhancing Trust and Safety in Digital Payments: An LLM-Powered Approach

arXiv.org Artificial Intelligence

Digital payment systems have revolutionized financial transactions, offering unparalleled convenience and accessibility to users worldwide. However, the increasing popularity of these platforms has also attracted malicious actors seeking to exploit their vulnerabilities for financial gain. To address this challenge, robust and adaptable scam detection mechanisms are crucial for maintaining the trust and safety of digital payment ecosystems. This paper presents a comprehensive approach to scam detection, focusing on the Unified Payments Interface (UPI) in India, Google Pay (GPay) as a specific use case. The approach leverages Large Language Models (LLMs) to enhance scam classification accuracy and designs a digital assistant to aid human reviewers in identifying and mitigating fraudulent activities. The results demonstrate the potential of LLMs in augmenting existing machine learning models and improving the efficiency, accuracy, quality, and consistency of scam reviews, ultimately contributing to a safer and more secure digital payment landscape. Our evaluation of the Gemini Ultra model on curated transaction data showed a 93.33% accuracy in scam classification. Furthermore, the model demonstrated 89% accuracy in generating reasoning for these classifications. A promising fact, the model identified 32% new accurate reasons for suspected scams that human reviewers had not included in the review notes.