Goto

Collaborating Authors

 Mengaldo, Gianmarco


XAI4Extremes: An interpretable machine learning framework for understanding extreme-weather precursors under climate change

arXiv.org Artificial Intelligence

Extreme weather events are increasing in frequency and intensity due to climate change. This, in turn, is exacting a significant toll in communities worldwide. While prediction skills are increasing with advances in numerical weather prediction and artificial intelligence tools, extreme weather still present challenges. More specifically, identifying the precursors of such extreme weather events and how these precursors may evolve under climate change remain unclear. In this paper, we propose to use post-hoc interpretability methods to construct relevance weather maps that show the key extreme-weather precursors identified by deep learning models. We then compare this machine view with existing domain knowledge to understand whether deep learning models identified patterns in data that may enrich our understanding of extreme-weather precursors. We finally bin these relevant maps into different multi-year time periods to understand the role that climate change is having on these precursors. The experiments are carried out on Indochina heatwaves, but the methodology can be readily extended to other extreme weather events worldwide.


Tell me why: Visual foundation models as self-explainable classifiers

arXiv.org Artificial Intelligence

Visual foundation models (VFMs) have become increasingly popular due to their state-of-the-art performance. However, interpretability remains crucial for critical applications. In this sense, self-explainable models (SEM) aim to provide interpretable classifiers that decompose predictions into a weighted sum of interpretable concepts. Despite their promise, recent studies have shown that these explanations often lack faithfulness. In this work, we combine VFMs with a novel prototypical architecture and specialized training objectives. By training only a lightweight head (approximately 1M parameters) on top of frozen VFMs, our approach (ProtoFM) offers an efficient and interpretable solution. Evaluations demonstrate that our approach achieves competitive classification performance while outperforming existing models across a range of interpretability metrics derived from the literature. Code is available at https://github.com/hturbe/proto-fm.


Towards Robust ESG Analysis Against Greenwashing Risks: Aspect-Action Analysis with Cross-Category Generalization

arXiv.org Artificial Intelligence

Sustainability reports are key for evaluating companies' environmental, social and governance, ESG performance, but their content is increasingly obscured by greenwashing - sustainability claims that are misleading, exaggerated, and fabricated. Yet, existing NLP approaches for ESG analysis lack robustness against greenwashing risks, often extracting insights that reflect misleading or exaggerated sustainability claims rather than objective ESG performance. To bridge this gap, we introduce A3CG - Aspect-Action Analysis with Cross-Category Generalization, as a novel dataset to improve the robustness of ESG analysis amid the prevalence of greenwashing. By explicitly linking sustainability aspects with their associated actions, A3CG facilitates a more fine-grained and transparent evaluation of sustainability claims, ensuring that insights are grounded in verifiable actions rather than vague or misleading rhetoric. Additionally, A3CG emphasizes cross-category generalization. This ensures robust model performance in aspect-action analysis even when companies change their reports to selectively favor certain sustainability areas. Through experiments on A3CG, we analyze state-of-the-art supervised models and LLMs, uncovering their limitations and outlining key directions for future research.


CondensNet: Enabling stable long-term climate simulations via hybrid deep learning models with adaptive physical constraints

arXiv.org Artificial Intelligence

Accurate and efficient climate simulations are crucial for understanding Earth's evolving climate. However, current general circulation models (GCMs) face challenges in capturing unresolved physical processes, such as cloud and convection. A common solution is to adopt cloud resolving models, that provide more accurate results than the standard subgrid parametrisation schemes typically used in GCMs. However, cloud resolving models, also referred to as super paramtetrizations, remain computationally prohibitive. Hybrid modeling, which integrates deep learning with equation-based GCMs, offers a promising alternative but often struggles with long-term stability and accuracy issues. In this work, we find that water vapor oversaturation during condensation is a key factor compromising the stability of hybrid models. To address this, we introduce CondensNet, a novel neural network architecture that embeds a self-adaptive physical constraint to correct unphysical condensation processes. CondensNet effectively mitigates water vapor oversaturation, enhancing simulation stability while maintaining accuracy and improving computational efficiency compared to super parameterization schemes. We integrate CondensNet into a GCM to form PCNN-GCM (Physics-Constrained Neural Network GCM), a hybrid deep learning framework designed for long-term stable climate simulations in real-world conditions, including ocean and land. PCNN-GCM represents a significant milestone in hybrid climate modeling, as it shows a novel way to incorporate physical constraints adaptively, paving the way for accurate, lightweight, and stable long-term climate simulations.


ESGSenticNet: A Neurosymbolic Knowledge Base for Corporate Sustainability Analysis

arXiv.org Artificial Intelligence

Evaluating corporate sustainability performance is essential to drive sustainable business practices, amid the need for a more sustainable economy. However, this is hindered by the complexity and volume of corporate sustainability data (i.e. sustainability disclosures), not least by the effectiveness of the NLP tools used to analyse them. To this end, we identify three primary challenges - immateriality, complexity, and subjectivity, that exacerbate the difficulty of extracting insights from sustainability disclosures. To address these issues, we introduce ESGSenticNet, a publicly available knowledge base for sustainability analysis. ESGSenticNet is constructed from a neurosymbolic framework that integrates specialised concept parsing, GPT-4o inference, and semi-supervised label propagation, together with a hierarchical taxonomy. This approach culminates in a structured knowledge base of 44k knowledge triplets - ('halve carbon emission', supports, 'emissions control'), for effective sustainability analysis. Experiments indicate that ESGSenticNet, when deployed as a lexical method, more effectively captures relevant and actionable sustainability information from sustainability disclosures compared to state of the art baselines. Besides capturing a high number of unique ESG topic terms, ESGSenticNet outperforms baselines on the ESG relatedness and ESG action orientation of these terms by 26% and 31% respectively. These metrics describe the extent to which topic terms are related to ESG, and depict an action toward ESG. Moreover, when deployed as a lexical method, ESGSenticNet does not require any training, possessing a key advantage in its simplicity for non-technical stakeholders.


Explain the Black Box for the Sake of Science: Revisiting the Scientific Method in the Era of Generative Artificial Intelligence

arXiv.org Artificial Intelligence

The scientific method is the cornerstone of human progress across all branches of the natural and applied sciences, from understanding the human body to explaining how the universe works. The scientific method is based on identifying systematic rules or principles that describe the phenomenon of interest in a reproducible way that can be validated through experimental evidence. In the era of artificial intelligence (AI), there are discussions on how AI systems may discover new knowledge. We argue that, before the advent of artificial general intelligence, human complex reasoning for scientific discovery remains of vital importance. Yet, AI can be leveraged for scientific discovery via explainable AI. More specifically, knowing what data AI systems used to make decisions can be a point of contact with domain experts and scientists, that can lead to divergent or convergent views on a given scientific problem. Divergent views may spark further scientific investigations leading to new scientific knowledge. Convergent views may instead reassure that the AI system is operating within bounds deemed reasonable to humans. The latter point addresses the trustworthiness requirement that is indispensable for critical applications in the applied sciences, such as medicine.


FinXABSA: Explainable Finance through Aspect-Based Sentiment Analysis

arXiv.org Artificial Intelligence

This paper presents a novel approach for explainability in financial analysis by deriving financially-explainable statistical relationships through aspect-based sentiment analysis, Pearson correlation, Granger causality & uncertainty coefficient. The proposed methodology involves constructing an aspect list from financial literature and applying aspect-based sentiment analysis on social media text to compute sentiment scores for each aspect. Pearson correlation is then applied to uncover financially explainable relationships between aspect sentiment scores and stock prices. Findings for derived relationships are made robust by applying Granger causality to determine the forecasting ability of each aspect sentiment score for stock prices. Finally, an added layer of interpretability is added by evaluating uncertainty coefficient scores between aspect sentiment scores and stock prices. This allows us to determine the aspects whose sentiment scores are most statistically significant for stock prices. Relative to other methods, our approach provides a more informative and accurate understanding of the relationship between sentiment analysis and stock prices. Specifically, this methodology enables an interpretation of the statistical relationship between aspect-based sentiment scores and stock prices, which offers explainability to AI-driven financial decision-making.


A Comprehensive Review on Financial Explainable AI

arXiv.org Artificial Intelligence

The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.


InterpretTime: a new approach for the systematic evaluation of neural-network interpretability in time series classification

arXiv.org Machine Learning

We present a novel approach to evaluate the performance of interpretability methods for time series classification, and propose a new strategy to assess the similarity between domain experts and machine data interpretation. The novel approach leverages a new family of synthetic datasets and introduces new interpretability evaluation metrics. The approach addresses several common issues encountered in the literature, and clearly depicts how well an interpretability method is capturing neural network's data usage, providing a systematic interpretability evaluation framework. The new methodology highlights the superiority of Shapley Value Sampling and Integrated Gradients for interpretability in time-series classification tasks.