Goto

Collaborating Authors

 Meng, Rui


Memory-Aware and Uncertainty-Guided Retrieval for Multi-Hop Question Answering

arXiv.org Artificial Intelligence

Multi-hop question answering (QA) requires models to retrieve and reason over multiple pieces of evidence. While Retrieval-Augmented Generation (RAG) has made progress in this area, existing methods often suffer from two key limitations: (1) fixed or overly frequent retrieval steps, and (2) ineffective use of previously retrieved knowledge. We propose MIND (Memory-Informed and INteractive Dynamic RAG), a framework that addresses these challenges through: (i) prompt-based entity extraction to identify reasoning-relevant elements, (ii) dynamic retrieval triggering based on token-level entropy and attention signals, and (iii) memory-aware filtering, which stores high-confidence facts across reasoning steps to enable consistent multi-hop generation.


A Pilot Empirical Study on When and How to Use Knowledge Graphs as Retrieval Augmented Generation

arXiv.org Artificial Intelligence

The integration of Knowledge Graphs (KGs) into the Retrieval Augmented Generation (RAG) framework has attracted significant interest, with early studies showing promise in mitigating hallucinations and improving model accuracy. However, a systematic understanding and comparative analysis of the rapidly emerging KG-RAG methods are still lacking. This paper seeks to lay the foundation for systematically answering the question of when and how to use KG-RAG by analyzing their performance in various application scenarios associated with different technical configurations. After outlining the mind map using KG-RAG framework and summarizing its popular pipeline, we conduct a pilot empirical study of KG-RAG works to reimplement and evaluate 6 KG-RAG methods across 7 datasets in diverse scenarios, analyzing the impact of 9 KG-RAG configurations in combination with 17 LLMs. Our results underscore the critical role of appropriate application conditions and optimal configurations of KG-RAG components.


Benchmarking LLMs for Political Science: A United Nations Perspective

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench.


VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks

arXiv.org Artificial Intelligence

Embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering. Recently, there has been a surge of interest in developing universal text embedding models that can generalize across tasks (e.g., MTEB). However, progress in learning universal multimodal embedding models has been relatively slow despite its importance and practicality. In this work, we aim to explore the potential of building universal multimodal embeddings capable of handling a wide range of downstream tasks. Our contributions are two fold: (1) we propose MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. We show that VLMs are secretly strong embedding models. Embeddings, or distributed representations, encode inputs (whether text or images) as fixed-dimensional vectors, enabling a range of downstream tasks. A recent shift in research has focused on developing universal embeddings that can generalize across a wide range of tasks. For instance, Muennighoff et al. (2023) introduced MTEB (Massive Text Embedding Benchmark) to comprehensively assess text embeddings across tasks such as classification and clustering. MTEB has become the standard for evaluating universal text embeddings. Recent works (Wang et al., 2022a; Su et al., 2023; Wang et al., 2024; Springer et al., 2024; BehnamGhader et al., 2024) have demonstrated promising results on the MTEB benchmark. However, progress in multimodal embeddings has been relatively slower. Work done during an internship at University of Waterloo in collaboration with Salesforce Research. Instruction: Represent the given news image with the Instruction: Represent the given image and the following caption for domain classification.


ReasoningRank: Teaching Student Models to Rank through Reasoning-Based Knowledge Distillation

arXiv.org Artificial Intelligence

Reranking documents based on their relevance to a given query is a critical task in information retrieval. Traditional reranking methods often lack transparency and rely on proprietary models, hindering reproducibility and interpretability. We propose Reason-to-Rank (R2R), a novel open-source reranking approach that enhances transparency by generating two types of reasoning: direct relevance reasoning, which explains how a document addresses the query, and comparison reasoning, which justifies the relevance of one document over another. We leverage large language models (LLMs) as teacher models to generate these explanations and distill this knowledge into smaller, openly available student models. Our student models are trained to generate meaningful reasoning and rerank documents, achieving competitive performance across multiple datasets, including MSMARCO and BRIGHT. Experiments demonstrate that R2R not only improves reranking accuracy but also provides valuable insights into the decision-making process. By offering a structured and interpretable solution with openly accessible resources, R2R aims to bridge the gap between effectiveness and transparency in information retrieval, fostering reproducibility and further research in the field.


CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval

arXiv.org Artificial Intelligence

Despite the success of text retrieval in many NLP tasks, code retrieval remains a largely underexplored area. Most text retrieval systems are tailored for natural language queries, often neglecting the specific challenges of retrieving code. This gap leaves existing models unable to effectively capture the diversity of programming languages and tasks across different domains, highlighting the need for more focused research in code retrieval. To address this, we introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters. Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework, enhancing model generalizability and retrieval performance. Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark. In addition to excelling in code retrieval, our models demonstrate competitive performance on the widely adopted BeIR text retrieval benchmark, offering versatility across domains. Experimental results demonstrate that improving retrieval performance significantly enhances end-to-end Retrieval-Augmented Generation (RAG) performance for code-related tasks.


Investigating Factuality in Long-Form Text Generation: The Roles of Self-Known and Self-Unknown

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated strong capabilities in text understanding and generation. However, they often lack factuality, producing a mixture of true and false information, especially in long-form generation. In this work, we investigates the factuality of long-form text generation across various large language models (LLMs), including GPT-4, Gemini-1.5-Pro, Our analysis reveals that factuality scores tend to decline in later sentences of the generated text, accompanied by a rise in the number of unsupported claims. Furthermore, we explore the effectiveness of different evaluation settings to assess whether LLMs can accurately judge the correctness of their own outputs: Self-Known (the percentage of supported atomic claims, decomposed from LLM outputs, that the corresponding LLMs judge as correct) and Self-Unknown (the percentage of unsupported atomic claims that the corresponding LLMs judge as incorrect). The results indicate that even advanced models like GPT-4 and Gemini-1.5-Pro Moreover, we find a correlation between higher Self-Known scores and improved factuality, while higher Self-Unknown scores are associated with lower factuality. These findings show the limitations of current LLMs in long-form generation, and provide valuable insights for improving factuality in long-form text generation. The long-context capabilities of large language models (LLMs) (OpenAI, 2023b; AI@Meta, 2024; Jiang et al., 2024; GeminiTeam, 2024; Anthropic, 2024) have seen significant advancements in recent years. Lots of work (Shaham et al., 2023; Bai et al., 2024; An et al., 2024; Zhang et al., 2024; Kuratov et al., 2024) have explored the ability of LLMs to handle long contexts, however, relatively few have examined their ability for long-form text generation.


Learning from Committee: Reasoning Distillation from a Mixture of Teachers with Peer-Review

arXiv.org Artificial Intelligence

While reasoning capabilities typically emerge in large language models (LLMs) with tens of billions of parameters, recent research focuses on improving smaller open-source models through knowledge distillation (KD) from commercial LLMs. However, many of these studies rely solely on responses from a single LLM as the gold rationale, unlike the natural human learning process, which involves understanding both the correct answers and the reasons behind mistakes. In this paper, we introduce a novel Fault-Aware Distillation via Peer-Review (FAIR) approach: 1) Instead of merely obtaining gold rationales from teachers, our method asks teachers to identify and explain the student's mistakes, providing customized instruction learning data. 2) We design a simulated peer-review process between teacher LLMs, which selects only the generated rationales above the acceptance threshold. This reduces the chance of teachers guessing correctly with flawed rationale, improving instructional data quality. Comprehensive experiments and analysis on mathematical, commonsense, and logical reasoning tasks demonstrate the effectiveness of our method.


Traffic Light or Light Traffic? Investigating Phrasal Semantics in Large Language Models

arXiv.org Artificial Intelligence

Phrases are fundamental linguistic units through which humans convey semantics. This study critically examines the capacity of API-based large language models (LLMs) to comprehend phrase semantics, utilizing three human-annotated datasets. We assess the performance of LLMs in executing phrase semantic reasoning tasks guided by natural language instructions and explore the impact of common prompting techniques, including few-shot demonstrations and Chain-of-Thought reasoning. Our findings reveal that LLMs greatly outperform traditional embedding methods across the datasets; however, they do not show a significant advantage over fine-tuned methods. The effectiveness of advanced prompting strategies shows variability. We conduct detailed error analyses to interpret the limitations faced by LLMs in comprehending phrase semantics. Code and data can be found at https://github.com/memray/llm_phrase_semantics.


RAG-RLRC-LaySum at BioLaySumm: Integrating Retrieval-Augmented Generation and Readability Control for Layman Summarization of Biomedical Texts

arXiv.org Artificial Intelligence

This paper introduces the RAG-RLRC-LaySum framework, designed to make complex biomedical research understandable to laymen through advanced Natural Language Processing (NLP) techniques. Our Retrieval Augmented Generation (RAG) solution, enhanced by a reranking method, utilizes multiple knowledge sources to ensure the precision and pertinence of lay summaries. Additionally, our Reinforcement Learning for Readability Control (RLRC) strategy improves readability, making scientific content comprehensible to non-specialists. Evaluations using the publicly accessible PLOS and eLife datasets show that our methods surpass Plain Gemini model, demonstrating a 20% increase in readability scores, a 15% improvement in ROUGE-2 relevance scores, and a 10% enhancement in factual accuracy. The RAG-RLRC-LaySum framework effectively democratizes scientific knowledge, enhancing public engagement with biomedical discoveries.