Goto

Collaborating Authors

 Mendelsohn, Julia


When People are Floods: Analyzing Dehumanizing Metaphors in Immigration Discourse with Large Language Models

arXiv.org Artificial Intelligence

Metaphor, discussing one concept in terms of another, is abundant in politics and can shape how people understand important issues. We develop a computational approach to measure metaphorical language, focusing on immigration discourse on social media. Grounded in qualitative social science research, we identify seven concepts evoked in immigration discourse (e.g. "water" or "vermin"). We propose and evaluate a novel technique that leverages both word-level and document-level signals to measure metaphor with respect to these concepts. We then study the relationship between metaphor, political ideology, and user engagement in 400K US tweets about immigration. While conservatives tend to use dehumanizing metaphors more than liberals, this effect varies widely across concepts. Moreover, creature-related metaphor is associated with more retweets, especially for liberal authors. Our work highlights the potential for computational methods to complement qualitative approaches in understanding subtle and implicit language in political discourse.


Framing Social Movements on Social Media: Unpacking Diagnostic, Prognostic, and Motivational Strategies

arXiv.org Artificial Intelligence

Social media enables activists to directly communicate with the public and provides a space for movement leaders, participants, bystanders, and opponents to collectively construct and contest narratives. Focusing on Twitter messages from social movements surrounding three issues in 2018-2019 (guns, immigration, and LGBTQ rights), we create a codebook, annotated dataset, and computational models to detect diagnostic (problem identification and attribution), prognostic (proposed solutions and tactics), and motivational (calls to action) framing strategies. We conduct an in-depth unsupervised linguistic analysis of each framing strategy, and uncover cross-movement similarities in associations between framing and linguistic features such as pronouns and deontic modal verbs. Finally, we compare framing strategies across issues and other social, cultural, and interactional contexts. For example, we show that diagnostic framing is more common in replies than original broadcast posts, and that social movement organizations focus much more on prognostic and motivational framing than journalists and ordinary citizens.


Prompt Design Matters for Computational Social Science Tasks but in Unpredictable Ways

arXiv.org Artificial Intelligence

Manually annotating data for computational social science tasks can be costly, time-consuming, and emotionally draining. While recent work suggests that LLMs can perform such annotation tasks in zero-shot settings, little is known about how prompt design impacts LLMs' compliance and accuracy. We conduct a large-scale multi-prompt experiment to test how model selection (ChatGPT, PaLM2, and Falcon7b) and prompt design features (definition inclusion, output type, explanation, and prompt length) impact the compliance and accuracy of LLM-generated annotations on four CSS tasks (toxicity, sentiment, rumor stance, and news frames). Our results show that LLM compliance and accuracy are highly prompt-dependent. For instance, prompting for numerical scores instead of labels reduces all LLMs' compliance and accuracy. The overall best prompting setup is task-dependent, and minor prompt changes can cause large changes in the distribution of generated labels. By showing that prompt design significantly impacts the quality and distribution of LLM-generated annotations, this work serves as both a warning and practical guide for researchers and practitioners.


How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment

arXiv.org Artificial Intelligence

Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- mimics the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI, and that participants were more likely to knowingly adopt AI ideas when the task was difficult. Our findings suggest that introducing AI ideas into society may increase collective diversity but not individual creativity.


From Dogwhistles to Bullhorns: Unveiling Coded Rhetoric with Language Models

arXiv.org Artificial Intelligence

Dogwhistles are coded expressions that simultaneously convey one meaning to a broad audience and a second one, often hateful or provocative, to a narrow in-group; they are deployed to evade both political repercussions and algorithmic content moderation. For example, in the sentence 'we need to end the cosmopolitan experiment,' the word 'cosmopolitan' likely means 'worldly' to many, but secretly means 'Jewish' to a select few. We present the first large-scale computational investigation of dogwhistles. We develop a typology of dogwhistles, curate the largest-to-date glossary of over 300 dogwhistles with rich contextual information and examples, and analyze their usage in historical U.S. politicians' speeches. We then assess whether a large language model (GPT-3) can identify dogwhistles and their meanings, and find that GPT-3's performance varies widely across types of dogwhistles and targeted groups. Finally, we show that harmful content containing dogwhistles avoids toxicity detection, highlighting online risks of such coded language. This work sheds light on the theoretical and applied importance of dogwhistles in both NLP and computational social science, and provides resources for future research in modeling dogwhistles and mitigating their online harms.


Bridging Nations: Quantifying the Role of Multilinguals in Communication on Social Media

arXiv.org Artificial Intelligence

Social media enables the rapid spread of many kinds of information, from memes to social movements. However, little is known about how information crosses linguistic boundaries. We apply causal inference techniques on the European Twitter network to quantify multilingual users' structural role and communication influence in cross-lingual information exchange. Overall, multilinguals play an essential role; posting in multiple languages increases betweenness centrality by 13%, and having a multilingual network neighbor increases monolinguals' odds of sharing domains and hashtags from another language 16-fold and 4-fold, respectively. We further show that multilinguals have a greater impact on diffusing information less accessible to their monolingual compatriots, such as information from far-away countries and content about regional politics, nascent social movements, and job opportunities. By highlighting information exchange across borders, this work sheds light on a crucial component of how information and ideas spread around the world.