Goto

Collaborating Authors

 Mccreadie, Richard


Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations

arXiv.org Artificial Intelligence

Interactive Text-to-Image Retrieval (I-TIR) has emerged as a transformative user-interactive tool for applications in domains such as e-commerce and education. Yet, current methodologies predominantly depend on finetuned Multimodal Large Language Models (MLLMs), which face two critical limitations: (1) Finetuning imposes prohibitive computational overhead and long-term maintenance costs. (2) Finetuning narrows the pretrained knowledge distribution of MLLMs, reducing their adaptability to novel scenarios. These issues are exacerbated by the inherently dynamic nature of real-world I-TIR systems, where queries and image databases evolve in complexity and diversity, often deviating from static training distributions. To overcome these constraints, we propose Diffusion Augmented Retrieval (DAR), a paradigm-shifting framework that bypasses MLLM finetuning entirely. DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations. This dual-modality approach deciphers nuanced user intent more holistically, enabling precise alignment between textual queries and visually relevant images. Rigorous evaluations across four benchmarks reveal DAR's dual strengths: (1) Matches state-of-the-art finetuned I-TIR models on straightforward queries without task-specific training. (2) Scalable Generalization: Surpasses finetuned baselines by 7.61% in Hits@10 (top-10 accuracy) under multi-turn conversational complexity, demonstrating robustness to intricate, distributionally shifted interactions. By eliminating finetuning dependencies and leveraging generative-augmented representations, DAR establishes a new trajectory for efficient, adaptive, and scalable cross-modal retrieval systems.


CFIR: Fast and Effective Long-Text To Image Retrieval for Large Corpora

arXiv.org Artificial Intelligence

Text-to-image retrieval aims to find the relevant images based on a text query, which is important in various use-cases, such as digital libraries, e-commerce, and multimedia databases. Although Multimodal Large Language Models (MLLMs) demonstrate state-of-the-art performance, they exhibit limitations in handling large-scale, diverse, and ambiguous real-world needs of retrieval, due to the computation cost and the injective embeddings they produce. This paper presents a two-stage Coarse-to-Fine Index-shared Retrieval (CFIR) framework, designed for fast and effective large-scale long-text to image retrieval. The first stage, Entity-based Ranking (ER), adapts to long-text query ambiguity by employing a multiple-queries-to-multiple-targets paradigm, facilitating candidate filtering for the next stage. The second stage, Summary-based Re-ranking (SR), refines these rankings using summarized queries. We also propose a specialized Decoupling-BEiT-3 encoder, optimized for handling ambiguous user needs and both stages, which also enhances computational efficiency through vector-based similarity inference. Evaluation on the AToMiC dataset reveals that CFIR surpasses existing MLLMs by up to 11.06% in Recall@1000, while reducing training and retrieval times by 68.75% and 99.79%, respectively. We will release our code to facilitate future research at https://github.com/longkukuhi/CFIR.


CLCE: An Approach to Refining Cross-Entropy and Contrastive Learning for Optimized Learning Fusion

arXiv.org Artificial Intelligence

State-of-the-art pre-trained image models predominantly adopt a two-stage approach: initial unsupervised pre-training on large-scale datasets followed by task-specific fine-tuning using Cross-Entropy loss~(CE). However, it has been demonstrated that CE can compromise model generalization and stability. While recent works employing contrastive learning address some of these limitations by enhancing the quality of embeddings and producing better decision boundaries, they often overlook the importance of hard negative mining and rely on resource intensive and slow training using large sample batches. To counter these issues, we introduce a novel approach named CLCE, which integrates Label-Aware Contrastive Learning with CE. Our approach not only maintains the strengths of both loss functions but also leverages hard negative mining in a synergistic way to enhance performance. Experimental results demonstrate that CLCE significantly outperforms CE in Top-1 accuracy across twelve benchmarks, achieving gains of up to 3.52% in few-shot learning scenarios and 3.41% in transfer learning settings with the BEiT-3 model. Importantly, our proposed CLCE approach effectively mitigates the dependency of contrastive learning on large batch sizes such as 4096 samples per batch, a limitation that has previously constrained the application of contrastive learning in budget-limited hardware environments.