Goto

Collaborating Authors

 Mavridis, Christos


Risk-Sensitive Reinforcement Learning with Exponential Criteria

arXiv.org Artificial Intelligence

While reinforcement learning has shown experimental success in a number of applications, it is known to be sensitive to noise and perturbations in the parameters of the system, leading to high variance in the total reward amongst different episodes on slightly different environments. To introduce robustness, as well as sample efficiency, risk-sensitive reinforcement learning methods are being thoroughly studied. In this work, we provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them, by solving an optimization problem with respect to a modified objective based on exponential criteria. In particular, we study a model-free risksensitive variation of the widely-used Monte Carlo Policy Gradient algorithm, and introduce a novel risk-sensitive online Actor-Critic algorithm based on solving a multiplicative Bellman equation using stochastic approximation updates. Analytical results suggest that the use of exponential criteria generalizes commonly used ad-hoc regularization approaches, improves sample efficiency, and introduces robustness with respect to perturbations in the model parameters and the environment. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.


Cooperative Bidirectional Mixed-Traffic Overtaking

arXiv.org Artificial Intelligence

While the situation where all vehicles for overtaking trajectory generation with real time operation on the road are fully autonomous remains a long term capability but often lack safety guarantees. While these goal, it is likely that most initial CAVs introduced will methods have not been applied to incoming lane overtaking, need to operate side by side with human driven vehicles our previous work [10] explored the use of a mixed-integer (HDVs) resulting in a mixed traffic situation. This results model predictive control (MI-MPC) strategy for bidirectional in many additional challenges brought about by the lack overtaking for a single autonomous agent. of cooperation and unpredictability of human drivers [1]. The use of communication among CAVs in order to Overtaking on the incoming lane is a scenario where these improve the overall efficiency and safety of many complex issues play a significant role due to the increased possibility traffic conditions such as highway merging [11] and traffic of head on collisions.


Multi-Resolution Online Deterministic Annealing: A Hierarchical and Progressive Learning Architecture

arXiv.org Artificial Intelligence

Hierarchical learning algorithms that gradually approximate a solution to a data-driven optimization problem are essential to decision-making systems, especially under limitations on time and computational resources. In this study, we introduce a general-purpose hierarchical learning architecture that is based on the progressive partitioning of a possibly multi-resolution data space. The optimal partition is gradually approximated by solving a sequence of optimization sub-problems that yield a sequence of partitions with increasing number of subsets. We show that the solution of each optimization problem can be estimated online using gradient-free stochastic approximation updates. As a consequence, a function approximation problem can be defined within each subset of the partition and solved using the theory of two-timescale stochastic approximation algorithms. This simulates an annealing process and defines a robust and interpretable heuristic method to gradually increase the complexity of the learning architecture in a task-agnostic manner, giving emphasis to regions of the data space that are considered more important according to a predefined criterion. Finally, by imposing a tree structure in the progression of the partitions, we provide a means to incorporate potential multi-resolution structure of the data space into this approach, significantly reducing its complexity, while introducing hierarchical variable-rate feature extraction properties similar to certain classes of deep learning architectures. Asymptotic convergence analysis and experimental results are provided for supervised and unsupervised learning problems.


Annealing Optimization for Progressive Learning with Stochastic Approximation

arXiv.org Artificial Intelligence

In this work, we introduce a learning model designed to meet the needs of applications in which computational resources are limited, and robustness and interpretability are prioritized. Learning problems can be formulated as constrained stochastic optimization problems, with the constraints originating mainly from model assumptions that define a trade-off between complexity and performance. This trade-off is closely related to over-fitting, generalization capacity, and robustness to noise and adversarial attacks, and depends on both the structure and complexity of the model, as well as the properties of the optimization methods used. We develop an online prototype-based learning algorithm based on annealing optimization that is formulated as an online gradient-free stochastic approximation algorithm. The learning model can be viewed as an interpretable and progressively growing competitive-learning neural network model to be used for supervised, unsupervised, and reinforcement learning. The annealing nature of the algorithm contributes to minimal hyper-parameter tuning requirements, poor local minima prevention, and robustness with respect to the initial conditions. At the same time, it provides online control over the performance-complexity trade-off by progressively increasing the complexity of the learning model as needed, through an intuitive bifurcation phenomenon. Finally, the use of stochastic approximation enables the study of the convergence of the learning algorithm through mathematical tools from dynamical systems and control, and allows for its integration with reinforcement learning algorithms, constructing an adaptive state-action aggregation scheme.