Goto

Collaborating Authors

 Mattina, Matthew


Design Principles for Lifelong Learning AI Accelerators

arXiv.org Artificial Intelligence

Lifelong learning - an agent's ability to learn throughout its lifetime - is a hallmark of biological learning systems and a central challenge for artificial intelligence (AI). The development of lifelong learning algorithms could lead to a range of novel AI applications, but this will also require the development of appropriate hardware accelerators, particularly if the models are to be deployed on edge platforms, which have strict size, weight, and power constraints. Here, we explore the design of lifelong learning AI accelerators that are intended for deployment in untethered environments. We identify key desirable capabilities for lifelong learning accelerators and highlight metrics to evaluate such accelerators. We then discuss current edge AI accelerators and explore the future design of lifelong learning accelerators, considering the role that different emerging technologies could play.


UDC: Unified DNAS for Compressible TinyML Models

arXiv.org Artificial Intelligence

Deploying TinyML models on low-cost IoT hardware is very challenging, due to limited device memory capacity. Neural processing unit (NPU) hardware address the memory challenge by using model compression to exploit weight quantization and sparsity to fit more parameters in the same footprint. However, designing compressible neural networks (NNs) is challenging, as it expands the design space across which we must make balanced trade-offs. This paper demonstrates Unified DNAS for Compressible (UDC) NNs, which explores a large search space to generate state-of-the-art compressible NNs for NPU. ImageNet results show UDC networks are up to $3.35\times$ smaller (iso-accuracy) or 6.25% more accurate (iso-model size) than previous work.


On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks

arXiv.org Machine Learning

Bayesian neural networks (BNNs) are making significant progress in many research areas where decision making needs to be accompanied by uncertainty estimation. Being able to quantify uncertainty while making decisions is essential for understanding when the model is over-/under-confident, and hence BNNs are attracting interest in safety-critical applications, such as autonomous driving, healthcare and robotics. Nevertheless, BNNs have not been as widely used in industrial practice, mainly because of their increased memory and compute costs. In this work, we investigate quantisation of BNNs by compressing 32-bit floating-point weights and activations to their integer counterparts, that has already been successful in reducing the compute demand in standard pointwise neural networks. We study three types of quantised BNNs, we evaluate them under a wide range of different settings, and we empirically demonstrate that an uniform quantisation scheme applied to BNNs does not substantially decrease their quality of uncertainty estimation.


Information contraction in noisy binary neural networks and its implications

arXiv.org Artificial Intelligence

Neural networks have gained importance as the machine learning models that achieve state-of-the-art performance on large-scale image classification, object detection and natural language processing tasks. In this paper, we consider noisy binary neural networks, where each neuron has a non-zero probability of producing an incorrect output. These noisy models may arise from biological, physical and electronic contexts and constitute an important class of models that are relevant to the physical world. Intuitively, the number of neurons in such systems has to grow to compensate for the noise while maintaining the same level of expressive power and computation reliability. Our key finding is a lower bound for the required number of neurons in noisy neural networks, which is first of its kind. To prove this lower bound, we take an information theoretic approach and obtain a novel strong data processing inequality (SDPI), which not only generalizes the Evans-Schulman results for binary symmetric channels to general channels, but also improves the tightness drastically when applied to estimate end-to-end information contraction in networks. Our SDPI can be applied to various information processing systems, including neural networks and cellular automata. Applying the SDPI in noisy binary neural networks, we obtain our key lower bound and investigate its implications on network depth-width trade-offs, our results suggest a depth-width trade-off for noisy neural networks that is very different from the established understanding regarding noiseless neural networks. Furthermore, we apply the SDPI to study fault-tolerant cellular automata and obtain bounds on the error correction overheads and the relaxation time. This paper offers new understanding of noisy information processing systems through the lens of information theory.


High Throughput Matrix-Matrix Multiplication between Asymmetric Bit-Width Operands

arXiv.org Machine Learning

Matrix multiplications between asymmetric bit-width operands, especially between 8- and 4-bit operands are likely to become a fundamental kernel of many important workloads including neural networks and machine learning. While existing SIMD matrix multiplication instructions for symmetric bit-width operands can support operands of mixed precision by zero- or sign-extending the narrow operand to match the size of the other operands, they cannot exploit the benefit of narrow bit-width of one of the operands. We propose a new SIMD matrix multiplication instruction that uses mixed precision on its inputs (8- and 4-bit operands) and accumulates product values into narrower 16-bit output accumulators, in turn allowing the SIMD operation at 128-bit vector width to process a greater number of data elements per instruction to improve processing throughput and memory bandwidth utilization without increasing the register read- and write-port bandwidth in CPUs. The proposed asymmetric-operand-size SIMD instruction offers 2x improvement in throughput of matrix multiplication in comparison to throughput obtained using existing symmetric-operand-size instructions while causing negligible (0.05%) overflow from 16-bit accumulators for representative machine learning workloads. The asymmetric-operand-size instruction not only can improve matrix multiplication throughput in CPUs, but also can be effective to support multiply-and-accumulate (MAC) operation between 8- and 4-bit operands in state-of-the-art DNN hardware accelerators (e.g., systolic array microarchitecture in Google TPU, etc.) and offer similar improvement in matrix multiply performance seamlessly without violating the various implementation constraints. We demonstrate how a systolic array architecture designed for symmetric-operand-size instructions could be modified to support an asymmetric-operand-sized instruction.


Efficient Residue Number System Based Winograd Convolution

arXiv.org Machine Learning

Prior research has shown that Winograd algorithm can reduce the computational complexity of convolutional neural networks (CNN) with weights and activations represented in floating point. However it is difficult to apply the scheme to the inference of low-precision quantized (e.g. INT8) networks. Our work extends the Winograd algorithm to Residue Number System (RNS). The minimal complexity convolution is computed precisely over large transformation tile (e.g. 10 x 10 to 16 x 16) of filters and activation patches using the Winograd transformation and low cost (e.g. 8-bit) arithmetic without degrading the prediction accuracy of the networks during inference. The arithmetic complexity reduction is up to 7.03x while the performance improvement is up to 2.30x to 4.69x for 3 x 3 and 5 x 5 filters respectively.


TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids

arXiv.org Machine Learning

Modern speech enhancement algorithms achieve remarkable noise suppression by means of large recurrent neural networks (RNNs). However, large RNNs limit practical deployment in hearing aid hardware (HW) form-factors, which are battery powered and run on resource-constrained microcontroller units (MCUs) with limited memory capacity and compute capability. In this work, we use model compression techniques to bridge this gap. We define the constraints imposed on the RNN by the HW and describe a method to satisfy them. Although model compression techniques are an active area of research, we are the first to demonstrate their efficacy for RNN speech enhancement, using pruning and integer quantization of weights/activations. We also demonstrate state update skipping, which reduces the computational load. Finally, we conduct a perceptual evaluation of the compressed models to verify audio quality on human raters. Results show a reduction in model size and operations of 11.9$\times$ and 2.9$\times$, respectively, over the baseline for compressed models, without a statistical difference in listening preference and only exhibiting a loss of 0.55dB SDR. Our model achieves a computational latency of 2.39ms, well within the 10ms target and 351$\times$ better than previous work.


Compressing Language Models using Doped Kronecker Products

arXiv.org Machine Learning

Kronecker Products (KP) have been used to compress IoT RNN Applications by 15-38x compression factors, achieving better results than traditional compression methods. However when KP is applied to large Natural Language Processing tasks, it leads to significant accuracy loss (approx 26%). This paper proposes a way to recover accuracy otherwise lost when applying KP to large NLP tasks, by allowing additional degrees of freedom in the KP matrix. More formally, we propose doping, a process of adding an extremely sparse overlay matrix on top of the pre-defined KP structure. We call this compression method doped kronecker product compression. To train these models, we present a new solution to the phenomenon of co-matrix adaption (CMA), which uses a new regularization scheme called co matrix dropout regularization (CMR). We present experimental results that demonstrate compression of a large language model with LSTM layers of size 25 MB by 25x with 1.4% loss in perplexity score. At 25x compression, an equivalent pruned network leads to 7.9% loss in perplexity score, while HMD and LMF lead to 15% and 27% loss in perplexity score respectively.


Pushing the limits of RNN Compression

arXiv.org Machine Learning

Recurrent Neural Networks (RNN) can be difficult to deploy on resource constrained devices due to their size. As a result, there is a need for compression techniques that can significantly compress RNNs without negatively impacting task accuracy. This paper introduces a method to compress RNNs for resource constrained environments using Kronecker product (KP). KPs can compress RNN layers by 16-38x with minimal accuracy loss. We show that KP can beat the task accuracy achieved by other state-of-the-art compression techniques (pruning and low-rank matrix factorization) across 4 benchmarks spanning 3 different applications, while simultaneously improving inference run-time.


Run-Time Efficient RNN Compression for Inference on Edge Devices

arXiv.org Machine Learning

Recurrent neural networks can be large and compute-intensive, yet many applications that benefit from RNNs run on small devices with very limited compute and storage capabilities while still having run-time constraints. As a result, there is a need for compression techniques that can achieve significant compression without negatively impacting inference run-time and task accuracy. This paper explores a new compressed RNN cell implementation called Hybrid Matrix Decomposition (HMD) that achieves this dual objective. This scheme divides the weight matrix into two parts - an unconstrained upper half and a lower half composed of rank-1 blocks. This results in output features where the upper sub-vector has "richer" features while the lower-sub vector has "constrained" features". HMD can compress RNNs by a factor of 2-4x while having a faster run-time than pruning and retaining more model accuracy than matrix factorization. We evaluate this technique on 3 benchmarks.