Goto

Collaborating Authors

 Mathur, Pranay


EgoMimic: Scaling Imitation Learning via Egocentric Video

arXiv.org Artificial Intelligence

The scale and diversity of demonstration data required for imitation learning is a significant challenge. We present EgoMimic, a full-stack framework which scales manipulation via human embodiment data, specifically egocentric human videos paired with 3D hand tracking. EgoMimic achieves this through: (1) a system to capture human embodiment data using the ergonomic Project Aria glasses, (2) a low-cost bimanual manipulator that minimizes the kinematic gap to human data, (3) cross-domain data alignment techniques, and (4) an imitation learning architecture that co-trains on human and robot data. Compared to prior works that only extract high-level intent from human videos, our approach treats human and robot data equally as embodied demonstration data and learns a unified policy from both data sources. EgoMimic achieves significant improvement on a diverse set of long-horizon, single-arm and bimanual manipulation tasks over state-of-the-art imitation learning methods and enables generalization to entirely new scenes. Finally, we show a favorable scaling trend for EgoMimic, where adding 1 hour of additional hand data is significantly more valuable than 1 hour of additional robot data. Videos and additional information can be found at https://egomimic.github.io/


Neural Visibility Field for Uncertainty-Driven Active Mapping

arXiv.org Artificial Intelligence

This paper presents Neural Visibility Field (NVF), a novel uncertainty quantification method for Neural Radiance Fields (NeRF) applied to active mapping. Our key insight is that regions not visible in the training views lead to inherently unreliable color predictions by NeRF at this region, resulting in increased uncertainty in the synthesized views. To address this, we propose to use Bayesian Networks to composite position-based field uncertainty into ray-based uncertainty in camera observations. Consequently, NVF naturally assigns higher uncertainty to unobserved regions, aiding robots to select the most informative next viewpoints. Extensive evaluations show that NVF excels not only in uncertainty quantification but also in scene reconstruction for active mapping, outperforming existing methods.


Proactive Human-Robot Interaction using Visuo-Lingual Transformers

arXiv.org Artificial Intelligence

Humans possess the innate ability to extract latent visuo-lingual cues to infer context through human interaction. During collaboration, this enables proactive prediction of the underlying intention of a series of tasks. In contrast, robotic agents collaborating with humans naively follow elementary instructions to complete tasks or use specific hand-crafted triggers to initiate proactive collaboration when working towards the completion of a goal. Endowing such robots with the ability to reason about the end goal and proactively suggest intermediate tasks will engender a much more intuitive method for human-robot collaboration. To this end, we propose a learning-based method that uses visual cues from the scene, lingual commands from a user and knowledge of prior object-object interaction to identify and proactively predict the underlying goal the user intends to achieve. Specifically, we propose ViLing-MMT, a vision-language multimodal transformer-based architecture that captures inter and intra-modal dependencies to provide accurate scene descriptions and proactively suggest tasks where applicable. We evaluate our proposed model in simulation and real-world scenarios.