Mateu, Carles
Classification of Malware by Using Structural Entropy on Convolutional Neural Networks
Gibert, Daniel (University of Lleida ) | Mateu, Carles (University of Lleida) | Planes, Jordi (University of Lleida) | Vicens, Ramon (Blueliv, Leap in Value)
The number of malicious programs has grown both in number and in sophistication. Analyzing the malicious intent of vast amounts of data requires huge resources and thus, effective categorization of malware is required. In this paper, the content of a malicious program is represented as an entropy stream, where each value describes the amount of entropy of a small chunk of code in a specific location of the file. Wavelet transforms are then applied to this entropy signal to describe the variation in the entropic energy. Motivated by the visual similarity between streams of entropy of malicious software belonging to the same family, we propose a file agnostic deep learning approach for categorization of malware. Our method exploits the fact that most variants are generated by using common obfuscation techniques and that compression and encryption algorithms retain some properties present in the original code. This allows us to find discriminative patterns that almost all variants in a family share. Our method has been evaluated using the data provided by Microsoft for the BigData Innovators Gathering Anti-Malware Prediction Challenge, and achieved promising results in comparison with the State of the Art.
The Automated Vacuum Waste Collection Optimization Problem
Béjar, Ramón (Universitat de Lleida) | Fernández, César (Universitat de Lleida) | Mateu, Carles (Universitat de Lleida) | Manyà, Felip (IIIA-CSIC) | Sole-Mauri, Francina (RosRoca Envirotec) | Vidal, David (RosRoca Envirotec)
One of the most challenging problems on modern urban planning and one of the goals to be solved for smart city design is that of urban waste disposal. Given urban population growth, and that the amount of waste generated by each of us citizens is also growing, the total amount of waste to be collected and treated is growing dramatically (EPA 2011), becoming one sensitive issue for local governments. A modern technique for waste collection that is steadily being adopted is automated vacuum waste collection. This technology uses air suction on a closed network of underground pipes to move waste from the collection points to the processing station, reducing greenhouse gas emissions as well as inconveniences to citizens (odors, noise, . . . ) and allowing better waste reuse and recycling. This technique is open to optimize energy consumption because moving huge amounts of waste by air impulsion requires a lot of electric power. The described problem challenge here is, precisely, that of organizing and scheduling waste collection to minimize the amount of energy per ton of collected waste in such a system via the use of Artificial Intelligence techniques. This kind of problems are an inviting opportunity to showcase the possibilities that AI for Computational Sustainability offers.