Not enough data to create a plot.
Try a different view from the menu above.
Martinelli, Julien
Challenges in interpretability of additive models
Zhang, Xinyu, Martinelli, Julien, John, ST
We review generalized additive models as a type of ``transparent'' model that has recently seen renewed interest in the deep learning community as neural additive models. We highlight multiple types of nonidentifiability in this model class and discuss challenges in interpretability, arguing for restraint when claiming ``interpretability'' or ``suitability for safety-critical applications'' of such models.
PABBO: Preferential Amortized Black-Box Optimization
Zhang, Xinyu, Huang, Daolang, Kaski, Samuel, Martinelli, Julien
Preferential Bayesian Optimization (PBO) is a sample-efficient method to learn latent user utilities from preferential feedback over a pair of designs. It relies on a statistical surrogate model for the latent function, usually a Gaussian process, and an acquisition strategy to select the next candidate pair to get user feedback on. Due to the non-conjugacy of the associated likelihood, every PBO step requires a significant amount of computations with various approximate inference techniques. This computational overhead is incompatible with the way humans interact with computers, hindering the use of PBO in real-world cases. Building on the recent advances of amortized BO, we propose to circumvent this issue by fully amortizing PBO, meta-learning both the surrogate and the acquisition function. Our method comprises a novel transformer neural process architecture, trained using reinforcement learning and tailored auxiliary losses. On a benchmark composed of synthetic and real-world datasets, our method is several orders of magnitude faster than the usual Gaussian process-based strategies and often outperforms them in accuracy.
Proxy-informed Bayesian transfer learning with unknown sources
Sloman, Sabina J., Martinelli, Julien, Kaski, Samuel
Generalization outside the scope of one's training data requires leveraging prior knowledge about the effects that transfer, and the effects that don't, between different data sources. Bayesian transfer learning is a principled paradigm for specifying this knowledge, and refining it on the basis of data from the source (training) and target (prediction) tasks. We address the challenging transfer learning setting where the learner (i) cannot fine-tune in the target task, and (ii) does not know which source data points correspond to the same task (i.e., the data sources are unknown). We propose a proxy-informed robust method for probabilistic transfer learning (PROMPT), which provides a posterior predictive estimate tailored to the structure of the target task, without requiring the learner have access to any outcome information from the target task. Instead, PROMPT relies on the availability of proxy information. PROMPT uses the same proxy information for two purposes: (i) estimation of effects specific to the target task, and (ii) construction of a robust reweighting of the source data for estimation of effects that transfer between tasks. We provide theoretical results on the effect of this reweighting on the risk of negative transfer, and demonstrate application of PROMPT in two synthetic settings.
Heteroscedastic Preferential Bayesian Optimization with Informative Noise Distributions
Sinaga, Marshal Arijona, Martinelli, Julien, Garg, Vikas, Kaski, Samuel
Preferential Bayesian optimization (PBO) is a sample-efficient framework for learning human preferences between candidate designs. PBO classically relies on homoscedastic noise models to represent human aleatoric uncertainty. Yet, such noise fails to accurately capture the varying levels of human aleatoric uncertainty, particularly when the user possesses partial knowledge among different pairs of candidates. For instance, a chemist with solid expertise in glucose-related molecules may easily compare two compounds from that family while struggling to compare alcohol-related molecules. Currently, PBO overlooks this uncertainty during the search for a new candidate through the maximization of the acquisition function, consequently underestimating the risk associated with human uncertainty. To address this issue, we propose a heteroscedastic noise model to capture human aleatoric uncertainty. This model adaptively assigns noise levels based on the distance of a specific input to a predefined set of reliable inputs known as anchors provided by the human. Anchors encapsulate partial knowledge and offer insight into the comparative difficulty of evaluating different candidate pairs. Such a model can be seamlessly integrated into the acquisition function, thus leading to candidate design pairs that elegantly trade informativeness and ease of comparison for the human expert. We perform an extensive empirical evaluation of the proposed approach, demonstrating a consistent improvement over homoscedastic PBO.
Cost-aware learning of relevant contextual variables within Bayesian optimization
Martinelli, Julien, Bharti, Ayush, John, S. T., Tiihonen, Armi, Sloman, Sabina, Filstroff, Louis, Kaski, Samuel
Contextual Bayesian Optimization (CBO) is a powerful framework for optimizing black-box, expensive-to-evaluate functions with respect to design variables, while simultaneously efficiently integrating relevant contextual information regarding the environment, such as experimental conditions. However, in many practical scenarios, the relevance of contextual variables is not necessarily known beforehand. Moreover, the contextual variables can sometimes be optimized themselves, a setting that current CBO algorithms do not take into account. Optimizing contextual variables may be costly, which raises the question of determining a minimal relevant subset. In this paper, we frame this problem as a cost-aware model selection BO task and address it using a novel method, Sensitivity-Analysis-Driven Contextual BO (SADCBO). We learn the relevance of context variables by sensitivity analysis of the posterior surrogate model at specific input points, whilst minimizing the cost of optimization by leveraging recent developments on early stopping for BO. We empirically evaluate our proposed SADCBO against alternatives on synthetic experiments together with extensive ablation studies, and demonstrate a consistent improvement across examples.
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Mikkola, Petrus, Martinelli, Julien, Filstroff, Louis, Kaski, Samuel
Bayesian optimization (BO) is a powerful framework for optimizing black-box, expensive-to-evaluate functions. Over the past decade, many algorithms have been proposed to integrate cheaper, lower-fidelity approximations of the objective function into the optimization process, with the goal of converging towards the global optimum at a reduced cost. This task is generally referred to as multi-fidelity Bayesian optimization (MFBO). However, MFBO algorithms can lead to higher optimization costs than their vanilla BO counterparts, especially when the low-fidelity sources are poor approximations of the objective function, therefore defeating their purpose. To address this issue, we propose rMFBO (robust MFBO), a methodology to make any GP-based MFBO scheme robust to the addition of unreliable information sources. rMFBO comes with a theoretical guarantee that its performance can be bound to its vanilla BO analog, with high controllable probability. We demonstrate the effectiveness of the proposed methodology on a number of numerical benchmarks, outperforming earlier MFBO methods on unreliable sources. We expect rMFBO to be particularly useful to reliably include human experts with varying knowledge within BO processes.
Reactmine: a statistical search algorithm for inferring chemical reactions from time series data
Martinelli, Julien, Grignard, Jeremy, Soliman, Sylvain, Ballesta, Annabelle, Fages, François
Inferring chemical reaction networks (CRN) from concentration time series is a challenge encouragedby the growing availability of quantitative temporal data at the cellular level. This motivates thedesign of algorithms to infer the preponderant reactions between the molecular species observed ina given biochemical process, and build CRN structure and kinetics models. Existing ODE-basedinference methods such as SINDy resort to least square regression combined with sparsity-enforcingpenalization, such as Lasso. However, we observe that these methods fail to learn sparse modelswhen the input time series are only available in wild type conditions, i.e. without the possibility toplay with combinations of zeroes in the initial conditions. We present a CRN inference algorithmwhich enforces sparsity by inferring reactions in a sequential fashion within a search tree of boundeddepth, ranking the inferred reaction candidates according to the variance of their kinetics on theirsupporting transitions, and re-optimizing the kinetic parameters of the CRN candidates on the wholetrace in a final pass. We show that Reactmine succeeds both on simulation data by retrievinghidden CRNs where SINDy fails, and on two real datasets, one of fluorescence videomicroscopyof cell cycle and circadian clock markers, the other one of biomedical measurements of systemiccircadian biomarkers possibly acting on clock gene expression in peripheral organs, by inferringpreponderant regulations in agreement with previous model-based analyses. The code is available athttps://gitlab.inria.fr/julmarti/crninf/ together with introductory notebooks.