Goto

Collaborating Authors

 Martin Slawski


Simple strategies for recovering inner products from coarsely quantized random projections

Neural Information Processing Systems

Random projections have been increasingly adopted for a diverse set of tasks in machine learning involving dimensionality reduction. One specific line of research on this topic has investigated the use of quantization subsequent to projection with the aim of additional data compression. Motivated by applications in nearest neighbor search and linear learning, we revisit the problem of recovering inner products (respectively cosine similarities) in such setting. We show that even under coarse scalar quantization with 3 to 5 bits per projection, the loss in accuracy tends to range from "negligible" to "moderate". One implication is that in most scenarios of practical interest, there is no need for a sophisticated recovery approach like maximum likelihood estimation as considered in previous work on the subject. What we propose herein also yields considerable improvements in terms of accuracy over the Hamming distance-based approach in Li et al. (ICML 2014) which is comparable in terms of simplicity.


Quantized Random Projections and Non-Linear Estimation of Cosine Similarity

Neural Information Processing Systems

Random projections constitute a simple, yet effective technique for dimensionality reduction with applications in learning and search problems. In the present paper, we consider the problem of estimating cosine similarities when the projected data undergo scalar quantization to b bits. We here argue that the maximum likelihood estimator (MLE) is a principled approach to deal with the non-linearity resulting from quantization, and subsequently study its computational and statistical properties. A specific focus is on the on the trade-off between bit depth and the number of projections given a fixed budget of bits for storage or transmission. Along the way, we also touch upon the existence of a qualitative counterpart to the Johnson-Lindenstrauss lemma in the presence of quantization.