Maronikolakis, Antonis
A Federated Approach to Few-Shot Hate Speech Detection for Marginalized Communities
Ye, Haotian, Wisiorek, Axel, Maronikolakis, Antonis, Alaçam, Özge, Schütze, Hinrich
Hate speech online remains an understudied issue for marginalized communities, and has seen rising relevance, especially in the Global South, which includes developing societies with increasing internet penetration. In this paper, we aim to provide marginalized communities living in societies where the dominant language is low-resource with a privacy-preserving tool to protect themselves from hate speech on the internet by filtering offensive content in their native languages. Our contribution in this paper is twofold: 1) we release REACT (REsponsive hate speech datasets Across ConTexts), a collection of high-quality, culture-specific hate speech detection datasets comprising seven distinct target groups in eight low-resource languages, curated by experienced data collectors; 2) we propose a solution to few-shot hate speech detection utilizing federated learning (FL), a privacy-preserving and collaborative learning approach, to continuously improve a central model that exhibits robustness when tackling different target groups and languages. By keeping the training local to the users' devices, we ensure the privacy of the users' data while benefitting from the efficiency of federated learning. Furthermore, we personalize client models to target-specific training data and evaluate their performance. Our results indicate the effectiveness of FL across different target groups, whereas the benefits of personalization on few-shot learning are not clear.
Politeness Stereotypes and Attack Vectors: Gender Stereotypes in Japanese and Korean Language Models
Steinborn, Victor, Maronikolakis, Antonis, Schütze, Hinrich
In efforts to keep up with the rapid progress and use of large language models, gender bias research is becoming more prevalent in NLP. Non-English bias research, however, is still in its infancy with most work focusing on English. In our work, we study how grammatical gender bias relating to politeness levels manifests in Japanese and Korean language models. Linguistic studies in these languages have identified a connection between gender bias and politeness levels, however it is not yet known if language models reproduce these biases. We analyze relative prediction probabilities of the male and female grammatical genders using templates and find that informal polite speech is most indicative of the female grammatical gender, while rude and formal speech is most indicative of the male grammatical gender. Further, we find politeness levels to be an attack vector for allocational gender bias in cyberbullying detection models. Cyberbullies can evade detection through simple techniques abusing politeness levels. We introduce an attack dataset to (i) identify representational gender bias across politeness levels, (ii) demonstrate how gender biases can be abused to bypass cyberbullying detection models and (iii) show that allocational biases can be mitigated via training on our proposed dataset. Through our findings we highlight the importance of bias research moving beyond its current English-centrism.
Sociocultural knowledge is needed for selection of shots in hate speech detection tasks
Maronikolakis, Antonis, Köksal, Abdullatif, Schütze, Hinrich
We introduce HATELEXICON, a lexicon of slurs and targets of hate speech for the countries of Brazil, Germany, India and Kenya, to aid training and interpretability of models. We demonstrate how our lexicon can be used to interpret model predictions, showing that models developed to classify extreme speech rely heavily on target words when making predictions. Further, we propose a method to aid shot selection for training in low-resource settings via HATELEXICON. In few-shot learning, the selection of shots is of paramount importance to model performance. In our work, we simulate a few-shot setting for German and Hindi, using HASOC data for training and the Multilingual HateCheck (MHC) as a benchmark. We show that selecting shots based on our lexicon leads to models performing better on MHC than models trained on shots sampled randomly. Thus, when given only a few training examples, using our lexicon to select shots containing more sociocultural information leads to better few-shot performance.
BERT Cannot Align Characters
Maronikolakis, Antonis, Dufter, Philipp, Schütze, Hinrich
In previous work, it has been shown that BERT can adequately align cross-lingual sentences on the word level. Here we investigate whether BERT can also operate as a char-level aligner. The languages examined are English, Fake-English, German and Greek. We show that the closer two languages are, the better BERT can align them on the character level. BERT indeed works well in English to Fake-English alignment, but this does not generalize to natural languages to the same extent. Nevertheless, the proximity of two languages does seem to be a factor. English is more related to German than to Greek and this is reflected in how well BERT aligns them; English to German is better than English to Greek. We examine multiple setups and show that the similarity matrices for natural languages show weaker relations the further apart two languages are.