Goto

Collaborating Authors

 Mao, Yuren


G-Boost: Boosting Private SLMs with General LLMs

arXiv.org Artificial Intelligence

Due to the limited computational resources, most Large Language Models (LLMs) developers can only fine-tune Small Language Models (SLMs) on their own data. These private SLMs typically have limited effectiveness. To boost the performance of private SLMs, this paper proposes to ask general LLMs for help. The general LLMs can be APIs or larger LLMs whose inference cost the developers can afford. Specifically, we propose the G-Boost framework where a private SLM adaptively performs collaborative inference with a general LLM under the guide of process reward. Experiments demonstrate that our framework can significantly boost the performance of private SLMs.


Snoopy: Effective and Efficient Semantic Join Discovery via Proxy Columns

arXiv.org Artificial Intelligence

Semantic join discovery, which aims to find columns in a table repository with high semantic joinabilities to a query column, is crucial for dataset discovery. Existing methods can be divided into two categories: cell-level methods and column-level methods. However, neither of them ensures both effectiveness and efficiency simultaneously. Cell-level methods, which compute the joinability by counting cell matches between columns, enjoy ideal effectiveness but suffer poor efficiency. In contrast, column-level methods, which determine joinability only by computing the similarity of column embeddings, enjoy proper efficiency but suffer poor effectiveness due to the issues occurring in their column embeddings: (i) semantics-joinability-gap, (ii) size limit, and (iii) permutation sensitivity. To address these issues, this paper proposes to compute column embeddings via proxy columns; furthermore, a novel column-level semantic join discovery framework, Snoopy, is presented, leveraging proxy-column-based embeddings to bridge effectiveness and efficiency. Specifically, the proposed column embeddings are derived from the implicit column-to-proxy-column relationships, which are captured by the lightweight approximate-graph-matching-based column projection.To acquire good proxy columns for guiding the column projection, we introduce a rank-aware contrastive learning paradigm. Extensive experiments on four real-world datasets demonstrate that Snoopy outperforms SOTA column-level methods by 16% in Recall@25 and 10% in NDCG@25, and achieves superior efficiency--being at least 5 orders of magnitude faster than cell-level solutions, and 3.5x faster than existing column-level methods.


A Survey on LoRA of Large Language Models

arXiv.org Artificial Intelligence

Low-Rank Adaptation~(LoRA), which updates the dense neural network layers with pluggable low-rank matrices, is one of the best performed parameter efficient fine-tuning paradigms. Furthermore, it has significant advantages in cross-task generalization and privacy-preserving. Hence, LoRA has gained much attention recently, and the number of related literature demonstrates exponential growth. It is necessary to conduct a comprehensive overview of the current progress on LoRA. This survey categorizes and reviews the progress from the perspectives of (1) downstream adaptation improving variants that improve LoRA's performance on downstream tasks; (2) cross-task generalization methods that mix multiple LoRA plugins to achieve cross-task generalization; (3) efficiency-improving methods that boost the computation-efficiency of LoRA; (4) data privacy-preserving methods that use LoRA in federated learning; (5) application. Besides, this survey also discusses the future directions in this field.


FIT-RAG: Black-Box RAG with Factual Information and Token Reduction

arXiv.org Artificial Intelligence

Due to the extraordinarily large number of parameters, fine-tuning Large Language Models (LLMs) to update long-tail or out-of-date knowledge is impractical in lots of applications. To avoid fine-tuning, we can alternatively treat a LLM as a black-box (i.e., freeze the parameters of the LLM) and augment it with a Retrieval-Augmented Generation (RAG) system, namely black-box RAG. Recently, black-box RAG has achieved success in knowledge-intensive tasks and has gained much attention. Existing black-box RAG methods typically fine-tune the retriever to cater to LLMs' preferences and concatenate all the retrieved documents as the input, which suffers from two issues: (1) Ignorance of Factual Information. The LLM preferred documents may not contain the factual information for the given question, which can mislead the retriever and hurt the effectiveness of black-box RAG; (2) Waste of Tokens. Simply concatenating all the retrieved documents brings large amounts of unnecessary tokens for LLMs, which degenerates the efficiency of black-box RAG. To address these issues, this paper proposes a novel black-box RAG framework which utilizes the factual information in the retrieval and reduces the number of tokens for augmentation, dubbed FIT-RAG. FIT-RAG utilizes the factual information by constructing a bi-label document scorer. Besides, it reduces the tokens by introducing a self-knowledge recognizer and a sub-document-level token reducer. FIT-RAG achieves both superior effectiveness and efficiency, which is validated by extensive experiments across three open-domain question-answering datasets: TriviaQA, NQ and PopQA. FIT-RAG can improve the answering accuracy of Llama2-13B-Chat by 14.3\% on TriviaQA, 19.9\% on NQ and 27.5\% on PopQA, respectively. Furthermore, it can save approximately half of the tokens on average across the three datasets.


FinSQL: Model-Agnostic LLMs-based Text-to-SQL Framework for Financial Analysis

arXiv.org Artificial Intelligence

Text-to-SQL, which provides zero-code interface for operating relational databases, has gained much attention in financial analysis; because, financial professionals may not well-skilled in SQL programming. However, until now, there is no practical Text-to-SQL benchmark dataset for financial analysis, and existing Text-to-SQL methods have not considered the unique characteristics of databases in financial applications, such as commonly existing wide tables. To address these issues, we collect a practical Text-to-SQL benchmark dataset and propose a model-agnostic Large Language Model (LLMs)-based Text-to-SQL framework for financial analysis. The benchmark dataset, BULL, is collected from the practical financial analysis business of Hundsun Technologies Inc., including databases for fund, stock, and macro economy. Besides, the proposed LLMs-based Text-to-SQL framework, FinSQL, provides a systematic treatment for financial Text-to-SQL from the perspectives of prompt construction, parameter-efficient fine-tuning and output calibration. Extensive experimental results on BULL demonstrate that FinSQL achieves the state-of-the-art Text-to-SQL performance at a small cost; furthermore, FinSQL can bring up to 36.64% performance improvement in scenarios requiring few-shot cross-database model transfer.


MultiEM: Efficient and Effective Unsupervised Multi-Table Entity Matching

arXiv.org Artificial Intelligence

Entity Matching (EM), which aims to identify all entity pairs referring to the same real-world entity from relational tables, is one of the most important tasks in real-world data management systems. Due to the labeling process of EM being extremely labor-intensive, unsupervised EM is more applicable than supervised EM in practical scenarios. Traditional unsupervised EM assumes that all entities come from two tables; however, it is more common to match entities from multiple tables in practical applications, that is, multi-table entity matching (multi-table EM). Unfortunately, effective and efficient unsupervised multi-table EM remains under-explored. To fill this gap, this paper formally studies the problem of unsupervised multi-table entity matching and proposes an effective and efficient solution, termed as MultiEM. MultiEM is a parallelable pipeline of enhanced entity representation, table-wise hierarchical merging, and density-based pruning. Extensive experimental results on six real-world benchmark datasets demonstrate the superiority of MultiEM in terms of effectiveness and efficiency.


C3: Zero-shot Text-to-SQL with ChatGPT

arXiv.org Artificial Intelligence

This paper proposes a ChatGPT-based zero-shot Text-to-SQL method, dubbed C3, which achieves 82.3\% in terms of execution accuracy on the holdout test set of Spider and becomes the state-of-the-art zero-shot Text-to-SQL method on the Spider Challenge. C3 consists of three key components: Clear Prompting (CP), Calibration with Hints (CH), and Consistent Output (CO), which are corresponding to the model input, model bias and model output respectively. It provides a systematic treatment for zero-shot Text-to-SQL. Extensive experiments have been conducted to verify the effectiveness and efficiency of our proposed method.


SparDL: Distributed Deep Learning Training with Efficient Sparse Communication

arXiv.org Artificial Intelligence

Top-$k$ sparsification has recently been widely used to reduce the communication volume in distributed deep learning; however, due to Gradient Accumulation (GA) dilemma, the performance of top-$k$ sparsification is still limited. Several methods have been proposed to handle the GA dilemma but have two drawbacks: (1) they are frustrated by the high communication complexity as they introduce a large amount of extra transmission; (2) they are not flexible for non-power-of-two numbers of workers. To solve these two problems, we propose a flexible and efficient sparse communication framework, dubbed SparDL. SparDL uses the Spar-Reduce-Scatter algorithm to solve the GA dilemma without additional communication operations and is flexible to any number of workers. Besides, to further reduce the communication complexity and adjust the proportion of latency and bandwidth cost in communication complexity, we propose the Spar-All-Gather algorithm as part of SparDL. Extensive experiments validate the superiority of SparDL.