Not enough data to create a plot.
Try a different view from the menu above.
Manocha, Dinesh
A Closer Look at the Limitations of Instruction Tuning
Ghosh, Sreyan, Evuru, Chandra Kiran Reddy, Kumar, Sonal, S, Ramaneswaran, Aneja, Deepali, Jin, Zeyu, Duraiswami, Ramani, Manocha, Dinesh
Instruction Tuning (IT), the process of training large language models (LLMs) using instruction-response pairs, has emerged as the predominant method for transforming base pre-trained LLMs into open-domain conversational agents. While IT has achieved notable success and widespread adoption, its limitations and shortcomings remain underexplored. In this paper, through rigorous experiments and an in-depth analysis of the changes LLMs undergo through IT, we reveal various limitations of IT. In particular, we show that (1) IT fails to enhance knowledge or skills in LLMs. LoRA fine-tuning is limited to learning response initiation and style tokens, and full-parameter fine-tuning leads to knowledge degradation. (2) Copying response patterns from IT datasets derived from knowledgeable sources leads to a decline in response quality. (3) Full-parameter fine-tuning increases hallucination by inaccurately borrowing tokens from conceptually similar instances in the IT dataset for generating responses. (4) Popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model. Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets. We hope the insights and challenges revealed inspire future work.
ProNav: Proprioceptive Traversability Estimation for Legged Robot Navigation in Outdoor Environments
Elnoor, Mohamed, Sathyamoorthy, Adarsh Jagan, Weerakoon, Kasun, Manocha, Dinesh
We propose a novel method, ProNav, which uses proprioceptive signals for traversability estimation in challenging outdoor terrains for autonomous legged robot navigation. Our approach uses sensor data from a legged robot's joint encoders, force, and current sensors to measure the joint positions, forces, and current consumption respectively to accurately assess a terrain's stability, resistance to the robot's motion, risk of entrapment, and crash. Based on these factors, we compute the appropriate robot gait to maximize stability, which leads to reduced energy consumption. Our approach can also be used to predict imminent crashes in challenging terrains and execute behaviors to preemptively avoid them. We integrate ProNav with an exteroceptive-based method to navigate real-world environments with dense vegetation, high granularity, negative obstacles, etc. Our method shows an improvement up to 40% in terms of success rate and up to 15.1% reduction in terms of energy consumption compared to exteroceptive-based methods.
REBEL: A Regularization-Based Solution for Reward Overoptimization in Reinforcement Learning from Human Feedback
Chakraborty, Souradip, Bhaskar, Amisha, Singh, Anukriti, Tokekar, Pratap, Manocha, Dinesh, Bedi, Amrit Singh
In this work, we propose REBEL, an algorithm for sample efficient reward regularization based robotic reinforcement learning from human feedback (RRLHF). Reinforcement learning (RL) performance for continuous control robotics tasks is sensitive to the underlying reward function. In practice, the reward function often ends up misaligned with human intent, values, social norms, etc., leading to catastrophic failures in the real world. We leverage human preferences to learn regularized reward functions and eventually align the agents with the true intended behavior. We introduce a novel notion of reward regularization to the existing RRLHF framework, which is termed as agent preferences. So, we not only consider human feedback in terms of preferences, we also propose to take into account the preference of the underlying RL agent while learning the reward function. We show that this helps to improve the over-optimization associated with the design of reward functions in RL. We experimentally show that REBEL exhibits up to 70% improvement in sample efficiency to achieve a similar level of episodic reward returns as compared to the state-of-the-art methods such as PEBBLE and PEBBLE+SURF.
FusDom: Combining In-Domain and Out-of-Domain Knowledge for Continuous Self-Supervised Learning
Seth, Ashish, Ghosh, Sreyan, Umesh, S., Manocha, Dinesh
Continued pre-training (CP) offers multiple advantages, like target domain adaptation and the potential to exploit the continuous stream of unlabeled data available online. However, continued pre-training on out-of-domain distributions often leads to catastrophic forgetting of previously acquired knowledge, leading to sub-optimal ASR performance. This paper presents FusDom, a simple and novel methodology for SSL-based continued pre-training. FusDom learns speech representations that are robust and adaptive yet not forgetful of concepts seen in the past. Instead of solving the SSL pre-text task on the output representations of a single model, FusDom leverages two identical pre-trained SSL models, a teacher and a student, with a modified pre-training head to solve the CP SSL pre-text task. This head employs a cross-attention mechanism between the representations of both models while only the student receives gradient updates and the teacher does not. Finally, the student is fine-tuned for ASR. In practice, FusDom outperforms all our baselines across settings significantly, with WER improvements in the range of 0.2 WER - 7.3 WER in the target domain while retaining the performance in the earlier domain.
Stable Distillation: Regularizing Continued Pre-training for Low-Resource Automatic Speech Recognition
Seth, Ashish, Ghosh, Sreyan, Umesh, S., Manocha, Dinesh
Continued self-supervised (SSL) pre-training for adapting existing SSL models to the target domain has shown to be extremely effective for low-resource Automatic Speech Recognition (ASR). This paper proposes Stable Distillation, a simple and novel approach for SSL-based continued pre-training that boosts ASR performance in the target domain where both labeled and unlabeled data are limited. Stable Distillation employs self-distillation as regularization for continued pre-training, alleviating the over-fitting issue, a common problem continued pre-training faces when the source and target domains differ. Specifically, first, we perform vanilla continued pre-training on an initial SSL pre-trained model on the target domain ASR dataset and call it the teacher. Next, we take the same initial pre-trained model as a student to perform continued pre-training while enforcing its hidden representations to be close to that of the teacher (via MSE loss). This student is then used for downstream ASR fine-tuning on the target dataset. In practice, Stable Distillation outperforms all our baselines by 0.8 - 7 WER when evaluated in various experimental settings.
APoLLo: Unified Adapter and Prompt Learning for Vision Language Models
Chowdhury, Sanjoy, Nag, Sayan, Manocha, Dinesh
The choice of input text prompt plays a critical role in the performance of Vision-Language Pretrained (VLP) models such as CLIP. We present APoLLo, a unified multi-modal approach that combines Adapter and Prompt learning for Vision-Language models. Our method is designed to substantially improve the generalization capabilities of VLP models when they are fine-tuned in a few-shot setting. We introduce trainable cross-attention-based adapter layers in conjunction with vision and language encoders to strengthen the alignment between the two modalities. We enforce consistency between the respective encoder branches (receiving augmented inputs) to prevent overfitting in downstream tasks. Our method is evaluated on three representative tasks: generalization to novel classes, cross-dataset evaluation, and unseen domain shifts. In practice, APoLLo achieves a relative gain up to 6.03% over MaPLe (SOTA) on novel classes for 10 diverse image recognition datasets.
HallusionBench: An Advanced Diagnostic Suite for Entangled Language Hallucination & Visual Illusion in Large Vision-Language Models
Guan, Tianrui, Liu, Fuxiao, Wu, Xiyang, Xian, Ruiqi, Li, Zongxia, Liu, Xiaoyu, Wang, Xijun, Chen, Lichang, Huang, Furong, Yacoob, Yaser, Manocha, Dinesh, Zhou, Tianyi
We introduce HallusionBench, a comprehensive benchmark designed for the evaluation of image-context reasoning. This benchmark presents significant challenges to advanced large visual-language models (LVLMs), such as GPT-4V(Vision) and LLaVA-1.5, by emphasizing nuanced understanding and interpretation of visual data. The benchmark comprises 346 images paired with 1129 questions, all meticulously crafted by human experts. We introduce a novel structure for these visual questions designed to establish control groups. This structure enables us to conduct a quantitative analysis of the models' response tendencies, logical consistency, and various failure modes. In our evaluation on HallusionBench, we benchmarked 13 different models, highlighting a 31.42% question-pair accuracy achieved by the state-of-the-art GPT-4V. Notably, all other evaluated models achieve accuracy below 16%. Moreover, our analysis not only highlights the observed failure modes, including language hallucination and visual illusion, but also deepens an understanding of these pitfalls. Our comprehensive case studies within HallusionBench shed light on the challenges of hallucination and illusion in LVLMs. Based on these insights, we suggest potential pathways for their future improvement. The benchmark and codebase can be accessed at https://github.com/tianyi-lab/HallusionBench.
MITFAS: Mutual Information based Temporal Feature Alignment and Sampling for Aerial Video Action Recognition
Xian, Ruiqi, Wang, Xijun, Manocha, Dinesh
We present a novel approach for action recognition in UAV videos. Our formulation is designed to handle occlusion and viewpoint changes caused by the movement of a UAV. We use the concept of mutual information to compute and align the regions corresponding to human action or motion in the temporal domain. This enables our recognition model to learn from the key features associated with the motion. We also propose a novel frame sampling method that uses joint mutual information to acquire the most informative frame sequence in UAV videos. We have integrated our approach with X3D and evaluated the performance on multiple datasets. In practice, we achieve 18.9% improvement in Top-1 accuracy over current state-of-the-art methods on UAV-Human(Li et al., 2021), 7.3% improvement on Drone-Action(Perera et al., 2019), and 7.16% improvement on NEC Drones(Choi et al., 2020).
AdVENTR: Autonomous Robot Navigation in Complex Outdoor Environments
Weerakoon, Kasun, Sathyamoorthy, Adarsh Jagan, Elnoor, Mohamed, Manocha, Dinesh
We present a novel system, AdVENTR for autonomous robot navigation in unstructured outdoor environments that consist of uneven and vegetated terrains. Our approach is general and can enable both wheeled and legged robots to handle outdoor terrain complexity including unevenness, surface properties like poor traction, granularity, obstacle stiffness, etc. We use data from sensors including RGB cameras, 3D Lidar, IMU, robot odometry, and pose information with efficient learning-based perception and planning algorithms that can execute on edge computing hardware. Our system uses a scene-aware switching method to perceive the environment for navigation at any time instant and dynamically switches between multiple perception algorithms. We test our system in a variety of sloped, rocky, muddy, and densely vegetated terrains and demonstrate its performance on Husky and Spot robots.
ASPIRE: Language-Guided Augmentation for Robust Image Classification
Ghosh, Sreyan, Evuru, Chandra Kiran Reddy, Kumar, Sonal, Tyagi, Utkarsh, Singh, Sakshi, Chowdhury, Sanjoy, Manocha, Dinesh
Neural image classifiers can often learn to make predictions by overly relying on non-predictive features that are spuriously correlated with the class labels in the training data. This leads to poor performance in real-world atypical scenarios where such features are absent. Supplementing the training dataset with images without such spurious features can aid robust learning against spurious correlations via better generalization. This paper presents ASPIRE (Language-guided data Augmentation for SPurIous correlation REmoval), a simple yet effective solution for expanding the training dataset with synthetic images without spurious features. ASPIRE, guided by language, generates these images without requiring any form of additional supervision or existing examples. Precisely, we employ LLMs to first extract foreground and background features from textual descriptions of an image, followed by advanced language-guided image editing to discover the features that are spuriously correlated with the class label. Finally, we personalize a text-to-image generation model to generate diverse in-domain images without spurious features. We demonstrate the effectiveness of ASPIRE on 4 datasets, including the very challenging Hard ImageNet dataset, and 9 baselines and show that ASPIRE improves the classification accuracy of prior methods by 1% - 38%. Code soon at: https://github.com/Sreyan88/ASPIRE.