Not enough data to create a plot.
Try a different view from the menu above.
Manocha, Dinesh
M-MELD: A Multilingual Multi-Party Dataset for Emotion Recognition in Conversations
Ghosh, Sreyan, Ramaneswaran, S, Tyagi, Utkarsh, Srivastava, Harshvardhan, Lepcha, Samden, Sakshi, S, Manocha, Dinesh
Expression of emotions is a crucial part of daily human communication. Emotion recognition in conversations (ERC) is an emerging field of study, where the primary task is to identify the emotion behind each utterance in a conversation. Though a lot of work has been done on ERC in the past, these works only focus on ERC in the English language, thereby ignoring any other languages. In this paper, we present Multilingual MELD (M-MELD), where we extend the Multimodal EmotionLines Dataset (MELD) \cite{poria2018meld} to 4 other languages beyond English, namely Greek, Polish, French, and Spanish. Beyond just establishing strong baselines for all of these 4 languages, we also propose a novel architecture, DiscLSTM, that uses both sequential and conversational discourse context in a conversational dialogue for ERC. Our proposed approach is computationally efficient, can transfer across languages using just a cross-lingual encoder, and achieves better performance than most uni-modal text approaches in the literature on both MELD and M-MELD. We make our data and code publicly on GitHub.
VERN: Vegetation-aware Robot Navigation in Dense Unstructured Outdoor Environments
Sathyamoorthy, Adarsh Jagan, Weerakoon, Kasun, Guan, Tianrui, Russell, Mason, Conover, Damon, Pusey, Jason, Manocha, Dinesh
We propose a novel method for autonomous legged robot navigation in densely vegetated environments with a variety of pliable/traversable and non-pliable/untraversable vegetation. We present a novel few-shot learning classifier that can be trained on a few hundred RGB images to differentiate flora that can be navigated through, from the ones that must be circumvented. Using the vegetation classification and 2D lidar scans, our method constructs a vegetation-aware traversability cost map that accurately represents the pliable and non-pliable obstacles with lower, and higher traversability costs, respectively. Our cost map construction accounts for misclassifications of the vegetation and further lowers the risk of collisions, freezing and entrapment in vegetation during navigation. Furthermore, we propose holonomic recovery behaviors for the robot for scenarios where it freezes, or gets physically entrapped in dense, pliable vegetation. We demonstrate our method on a Boston Dynamics Spot robot in real-world unstructured environments with sparse and dense tall grass, bushes, trees, etc. We observe an increase of 25-90% in success rates, 10-90% decrease in freezing rate, and up to 65% decrease in the false positive rate compared to existing methods.
Towards Improved Room Impulse Response Estimation for Speech Recognition
Ratnarajah, Anton, Ananthabhotla, Ishwarya, Ithapu, Vamsi Krishna, Hoffmann, Pablo, Manocha, Dinesh, Calamia, Paul
We propose a novel approach for blind room impulse response (RIR) estimation systems in the context of a downstream application scenario, far-field automatic speech recognition (ASR). We first draw the connection between improved RIR estimation and improved ASR performance, as a means of evaluating neural RIR estimators. We then propose a generative adversarial network (GAN) based architecture that encodes RIR features from reverberant speech and constructs an RIR from the encoded features, and uses a novel energy decay relief loss to optimize for capturing energy-based properties of the input reverberant speech. We show that our model outperforms the state-of-the-art baselines on acoustic benchmarks (by 17\% on the energy decay relief and 22\% on an early-reflection energy metric), as well as in an ASR evaluation task (by 6.9\% in word error rate).
DS-MPEPC: Safe and Deadlock-Avoiding Robot Navigation in Cluttered Dynamic Scenes
Arul, Senthil Hariharan, Park, Jong Jin, Manocha, Dinesh
We present an algorithm for safe robot navigation in complex dynamic environments using a variant of model predictive equilibrium point control. We use an optimization formulation to navigate robots gracefully in dynamic environments by optimizing over a trajectory cost function at each timestep. We present a novel trajectory cost formulation that significantly reduces the conservative and deadlock behaviors and generates smooth trajectories. In particular, we propose a new collision probability function that effectively captures the risk associated with a given configuration and the time to avoid collisions based on the velocity direction. Moreover, we propose a terminal state cost based on the expected time-to-goal and time-to-collision values that helps in avoiding trajectories that could result in deadlock. We evaluate our cost formulation in multiple simulated and real-world scenarios, including narrow corridors with dynamic obstacles, and observe significantly improved navigation behavior and reduced deadlocks as compared to prior methods.
Real-Time Decentralized Navigation of Nonholonomic Agents Using Shifted Yielding Areas
He, Liang, Pan, Zherong, Manocha, Dinesh
We present a lightweight, decentralized algorithm for navigating multiple nonholonomic agents through challenging environments with narrow passages. Our key idea is to allow agents to yield to each other in large open areas instead of narrow passages, to increase the success rate of conventional decentralized algorithms. At pre-processing time, our method computes a medial axis for the freespace. A reference trajectory is then computed and projected onto the medial axis for each agent. During run time, when an agent senses other agents moving in the opposite direction, our algorithm uses the medial axis to estimate a Point of Impact (POI) as well as the available area around the POI. If the area around the POI is not large enough for yielding behaviors to be successful, we shift the POI to nearby large areas by modulating the agent's reference trajectory and traveling speed. We evaluate our method on a row of 4 environments with up to 15 robots, and we find our method incurs a marginal computational overhead of 10-30 ms on average, achieving real-time performance. Afterward, our planned reference trajectories can be tracked using local navigation algorithms to achieve up to a $100\%$ higher success rate over local navigation algorithms alone.
AZTR: Aerial Video Action Recognition with Auto Zoom and Temporal Reasoning
Wang, Xijun, Xian, Ruiqi, Guan, Tianrui, de Melo, Celso M., Nogar, Stephen M., Bera, Aniket, Manocha, Dinesh
We propose a novel approach for aerial video action recognition. Our method is designed for videos captured using UAVs and can run on edge or mobile devices. We present a learning-based approach that uses customized auto zoom to automatically identify the human target and scale it appropriately. This makes it easier to extract the key features and reduces the computational overhead. We also present an efficient temporal reasoning algorithm to capture the action information along the spatial and temporal domains within a controllable computational cost. Our approach has been implemented and evaluated both on the desktop with high-end GPUs and on the low power Robotics RB5 Platform for robots and drones. In practice, we achieve 6.1-7.4% improvement over SOTA in Top-1 accuracy on the RoCoG-v2 dataset, 8.3-10.4% improvement on the UAV-Human dataset and 3.2% improvement on the Drone Action dataset.
RTAW: An Attention Inspired Reinforcement Learning Method for Multi-Robot Task Allocation in Warehouse Environments
Agrawal, Aakriti, Bedi, Amrit Singh, Manocha, Dinesh
We present a novel reinforcement learning based algorithm for multi-robot task allocation problem in warehouse environments. We formulate it as a Markov Decision Process and solve via a novel deep multi-agent reinforcement learning method (called RTAW) with attention inspired policy architecture. Hence, our proposed policy network uses global embeddings that are independent of the number of robots/tasks. We utilize proximal policy optimization algorithm for training and use a carefully designed reward to obtain a converged policy. The converged policy ensures cooperation among different robots to minimize total travel delay (TTD) which ultimately improves the makespan for a sufficiently large task-list. In our extensive experiments, we compare the performance of our RTAW algorithm to state of the art methods such as myopic pickup distance minimization (greedy) and regret based baselines on different navigation schemes. We show an improvement of upto 14% (25-1000 seconds) in TTD on scenarios with hundreds or thousands of tasks for different challenging warehouse layouts and task generation schemes. We also demonstrate the scalability of our approach by showing performance with up to $1000$ robots in simulations.
FedBC: Calibrating Global and Local Models via Federated Learning Beyond Consensus
Bedi, Amrit Singh, Fan, Chen, Koppel, Alec, Sahu, Anit Kumar, Sadler, Brian M., Huang, Furong, Manocha, Dinesh
In this work, we quantitatively calibrate the performance of global and local models in federated learning through a multi-criterion optimization-based framework, which we cast as a constrained program. The objective of a device is its local objective, which it seeks to minimize while satisfying nonlinear constraints that quantify the proximity between the local and the global model. By considering the Lagrangian relaxation of this problem, we develop a novel primal-dual method called Federated Learning Beyond Consensus (\texttt{FedBC}). Theoretically, we establish that \texttt{FedBC} converges to a first-order stationary point at rates that matches the state of the art, up to an additional error term that depends on a tolerance parameter introduced to scalarize the multi-criterion formulation. Finally, we demonstrate that \texttt{FedBC} balances the global and local model test accuracy metrics across a suite of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare), achieving competitive performance with state-of-the-art.
Beyond Exponentially Fast Mixing in Average-Reward Reinforcement Learning via Multi-Level Monte Carlo Actor-Critic
Suttle, Wesley A., Bedi, Amrit Singh, Patel, Bhrij, Sadler, Brian M., Koppel, Alec, Manocha, Dinesh
Many existing reinforcement learning (RL) methods employ stochastic gradient iteration on the back end, whose stability hinges upon a hypothesis that the data-generating process mixes exponentially fast with a rate parameter that appears in the step-size selection. Unfortunately, this assumption is violated for large state spaces or settings with sparse rewards, and the mixing time is unknown, making the step size inoperable. In this work, we propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm. This method, which we call \textbf{M}ulti-level \textbf{A}ctor-\textbf{C}ritic (MAC), is developed especially for infinite-horizon average-reward settings and neither relies on oracle knowledge of the mixing time in its parameter selection nor assumes its exponential decay; it, therefore, is readily applicable to applications with slower mixing times. Nonetheless, it achieves a convergence rate comparable to the state-of-the-art AC algorithms. We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.
Synthetic Wave-Geometric Impulse Responses for Improved Speech Dereverberation
Aralikatti, Rohith, Tang, Zhenyu, Manocha, Dinesh
We present a novel approach to improve the performance of learning-based speech dereverberation using accurate synthetic datasets. Our approach is designed to recover the reverb-free signal from a reverberant speech signal. We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation. We use the GWA dataset that consists of synthetic RIRs generated in a hybrid fashion: an accurate wave-based solver is used to simulate the lower frequencies and geometric ray tracing methods simulate the higher frequencies. We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods on four real-world RIR datasets.