Mandt, Stephan
Generative Uncertainty in Diffusion Models
Jazbec, Metod, Wong-Toi, Eliot, Xia, Guoxuan, Zhang, Dan, Nalisnick, Eric, Mandt, Stephan
Diffusion models have recently driven significant breakthroughs in generative modeling. While state-of-the-art models produce high-quality samples on average, individual samples can still be low quality. Detecting such samples without human inspection remains a challenging task. To address this, we propose a Bayesian framework for estimating generative uncertainty of synthetic samples. We outline how to make Bayesian inference practical for large, modern generative models and introduce a new semantic likelihood (evaluated in the latent space of a feature extractor) to address the challenges posed by high-dimensional sample spaces. Through our experiments, we demonstrate that the proposed generative uncertainty effectively identifies poor-quality samples and significantly outperforms existing uncertainty-based methods. Notably, our Bayesian framework can be applied post-hoc to any pretrained diffusion or flow matching model (via the Laplace approximation), and we propose simple yet effective techniques to minimize its computational overhead during sampling.
Variational Control for Guidance in Diffusion Models
Pandey, Kushagra, Sofian, Farrin Marouf, Draxler, Felix, Karaletsos, Theofanis, Mandt, Stephan
Diffusion models exhibit excellent sample quality, but existing guidance methods often require additional model training or are limited to specific tasks. We revisit guidance in diffusion models from the perspective of variational inference and control, introducing Diffusion Trajectory Matching (DTM) that enables guiding pretrained diffusion trajectories to satisfy a terminal cost. DTM unifies a broad class of guidance methods and enables novel instantiations. We introduce a new method within this framework that achieves state-of-the-art results on several linear and (blind) non-linear inverse problems without requiring additional model training or modifications. For instance, in ImageNet non-linear deblurring, our model achieves an FID score of 34.31, significantly improving over the best pretrained-method baseline (FID 78.07). We will make the code available in a future update.
Progressive Compression with Universally Quantized Diffusion Models
Yang, Yibo, Will, Justus C., Mandt, Stephan
Diffusion probabilistic models have achieved mainstream success in many generative modeling tasks, from image generation to inverse problem solving. A distinct feature of these models is that they correspond to deep hierarchical latent variable models optimizing a variational evidence lower bound (ELBO) on the data likelihood. Drawing on a basic connection between likelihood modeling and compression, we explore the potential of diffusion models for progressive coding, resulting in a sequence of bits that can be incrementally transmitted and decoded with progressively improving reconstruction quality. Unlike prior work based on Gaussian diffusion or conditional diffusion models, we propose a new form of diffusion model with uniform noise in the forward process, whose negative ELBO corresponds to the end-to-end compression cost using universal quantization. We obtain promising first results on image compression, achieving competitive rate-distortion and rate-realism results on a wide range of bit-rates with a single model, bringing neural codecs a step closer to practical deployment.
One Diffusion to Generate Them All
Le, Duong H., Pham, Tuan, Lee, Sangho, Clark, Christopher, Kembhavi, Aniruddha, Mandt, Stephan, Krishna, Ranjay, Lu, Jiasen
We introduce OneDiffusion, a versatile, large-scale diffusion model that seamlessly supports bidirectional image synthesis and understanding across diverse tasks. It enables conditional generation from inputs such as text, depth, pose, layout, and semantic maps, while also handling tasks like image deblurring, upscaling, and reverse processes such as depth estimation and segmentation. Additionally, OneDiffusion allows for multi-view generation, camera pose estimation, and instant personalization using sequential image inputs. Our model takes a straightforward yet effective approach by treating all tasks as frame sequences with varying noise scales during training, allowing any frame to act as a conditioning image at inference time. Our unified training framework removes the need for specialized architectures, supports scalable multi-task training, and adapts smoothly to any resolution, enhancing both generalization and scalability. Experimental results demonstrate competitive performance across tasks in both generation and prediction such as text-to-image, multiview generation, ID preservation, depth estimation and camera pose estimation despite relatively small training dataset. Our code and checkpoint are freely available at https://github.com/lehduong/OneDiffusion
Weakly-Supervised Multimodal Learning on MIMIC-CXR
Agostini, Andrea, Chopard, Daphné, Meng, Yang, Fortin, Norbert, Shahbaba, Babak, Mandt, Stephan, Sutter, Thomas M., Vogt, Julia E.
Multimodal data integration and label scarcity pose significant challenges for machine learning in medical settings. To address these issues, we conduct an in-depth evaluation of the newly proposed Multimodal Variational Mixture-of-Experts (MMVM) VAE on the challenging MIMIC-CXR dataset. Our analysis demonstrates that the MMVM VAE consistently outperforms other multimodal VAEs and fully supervised approaches, highlighting its strong potential for real-world medical applications.
Heavy-Tailed Diffusion Models
Pandey, Kushagra, Pathak, Jaideep, Xu, Yilun, Mandt, Stephan, Pritchard, Michael, Vahdat, Arash, Mardani, Morteza
Diffusion models achieve state-of-the-art generation quality across many applications, but their ability to capture rare or extreme events in heavy-tailed distributions remains unclear. In this work, we show that traditional diffusion and flow-matching models with standard Gaussian priors fail to capture heavy-tailed behavior. We address this by repurposing the diffusion framework for heavy-tail estimation using multivariate Student-t distributions. We develop a tailored perturbation kernel and derive the denoising posterior based on the conditional Student-t distribution for the backward process. Inspired by $\gamma$-divergence for heavy-tailed distributions, we derive a training objective for heavy-tailed denoisers. The resulting framework introduces controllable tail generation using only a single scalar hyperparameter, making it easily tunable for diverse real-world distributions. As specific instantiations of our framework, we introduce t-EDM and t-Flow, extensions of existing diffusion and flow models that employ a Student-t prior. Remarkably, our approach is readily compatible with standard Gaussian diffusion models and requires only minimal code changes. Empirically, we show that our t-EDM and t-Flow outperform standard diffusion models in heavy-tail estimation on high-resolution weather datasets in which generating rare and extreme events is crucial.
Anomaly Detection of Tabular Data Using LLMs
Li, Aodong, Zhao, Yunhan, Qiu, Chen, Kloft, Marius, Smyth, Padhraic, Rudolph, Maja, Mandt, Stephan
Large language models (LLMs) have shown their potential in long-context understanding and mathematical reasoning. In this paper, we study the problem of using LLMs to detect tabular anomalies and show that pre-trained LLMs are zero-shot batch-level anomaly detectors. That is, without extra distribution-specific model fitting, they can discover hidden outliers in a batch of data, demonstrating their ability to identify low-density data regions. For LLMs that are not well aligned with anomaly detection and frequently output factual errors, we apply simple yet effective data-generating processes to simulate synthetic batch-level anomaly detection datasets and propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies. Experiments on a large anomaly detection benchmark (ODDS) showcase i) GPT-4 has on-par performance with the state-of-the-art transductive learning-based anomaly detection methods and ii) the efficacy of our synthetic dataset and fine-tuning strategy in aligning LLMs to this task.
Neural NeRF Compression
Pham, Tuan, Mandt, Stephan
Neural Radiance Fields (NeRFs) have emerged as powerful tools for capturing detailed 3D scenes through continuous volumetric representations. Recent NeRFs utilize feature grids to improve rendering quality and speed; however, these representations introduce significant storage overhead. This paper presents a novel method for efficiently compressing a grid-based NeRF model, addressing the storage overhead concern. Our approach is based on the non-linear transform coding paradigm, employing neural compression for compressing the model's feature grids. Due to the lack of training data involving many i.i.d scenes, we design an encoder-free, end-to-end optimized approach for individual scenes, using lightweight decoders. To leverage the spatial inhomogeneity of the latent feature grids, we introduce an importance-weighted rate-distortion objective and a sparse entropy model employing a masking mechanism. Our experimental results validate that our proposed method surpasses existing works in terms of grid-based NeRF compression efficacy and reconstruction quality.
Preserving Identity with Variational Score for General-purpose 3D Editing
Le, Duong H., Pham, Tuan, Kembhavi, Aniruddha, Mandt, Stephan, Ma, Wei-Chiu, Lu, Jiasen
We present Piva (Preserving Identity with Variational Score Distillation), a novel optimization-based method for editing images and 3D models based on diffusion models. Specifically, our approach is inspired by the recently proposed method for 2D image editing - Delta Denoising Score (DDS). We pinpoint the limitations in DDS for 2D and 3D editing, which causes detail loss and over-saturation. To address this, we propose an additional score distillation term that enforces identity preservation. This results in a more stable editing process, gradually optimizing NeRF models to match target prompts while retaining crucial input characteristics. We demonstrate the effectiveness of our approach in zero-shot image and neural field editing. Our method successfully alters visual attributes, adds both subtle and substantial structural elements, translates shapes, and achieves competitive results on standard 2D and 3D editing benchmarks. Additionally, our method imposes no constraints like masking or pre-training, making it compatible with a wide range of pre-trained diffusion models. This allows for versatile editing without needing neural field-to-mesh conversion, offering a more user-friendly experience.
Unity by Diversity: Improved Representation Learning in Multimodal VAEs
Sutter, Thomas M., Meng, Yang, Agostini, Andrea, Chopard, Daphné, Fortin, Norbert, Vogt, Julia E., Shahbaba, Bahbak, Mandt, Stephan
Variational Autoencoders for multimodal data hold promise for many tasks in data analysis, such as representation learning, conditional generation, and imputation. Current architectures either share the encoder output, decoder input, or both across modalities to learn a shared representation. Such architectures impose hard constraints on the model. In this work, we show that a better latent representation can be obtained by replacing these hard constraints with a soft constraint. We propose a new mixture-of-experts prior, softly guiding each modality's latent representation towards a shared aggregate posterior. This approach results in a superior latent representation and allows each encoding to preserve information better from its uncompressed original features. In extensive experiments on multiple benchmark datasets and two challenging real-world datasets, we show improved learned latent representations and imputation of missing data modalities compared to existing methods.