Goto

Collaborating Authors

 Mandayam, Narayan B.


Human-AI Collaboration in Cloud Security: Cognitive Hierarchy-Driven Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Given the complexity of multi-tenant cloud environments and the need for real-time threat mitigation, Security Operations Centers (SOCs) must integrate AI-driven adaptive defenses against Advanced Persistent Threats (APTs). However, SOC analysts struggle with countering adaptive adversarial tactics, necessitating intelligent decision-support frameworks. To enhance human-AI collaboration in SOCs, we propose a Cognitive Hierarchy Theory-driven Deep Q-Network (CHT-DQN) framework that models SOC analysts' decision-making against AI-driven APT bots. The SOC analyst (defender) operates at cognitive level-1, anticipating attacker strategies, while the APT bot (attacker) follows a level-0 exploitative policy. By incorporating CHT into DQN, our framework enhances SOC defense strategies via Attack Graph (AG)-based reinforcement learning. Simulation experiments across varying AG complexities show that CHT-DQN achieves higher data protection and lower action discrepancies compared to standard DQN. A theoretical lower bound analysis further validates its superior Q-value performance. A human-in-the-loop (HITL) evaluation on Amazon Mechanical Turk (MTurk) reveals that SOC analysts using CHT-DQN-driven transition probabilities align better with adaptive attackers, improving data protection. Additionally, human decision patterns exhibit risk aversion after failure and risk-seeking behavior after success, aligning with Prospect Theory. These findings underscore the potential of integrating cognitive modeling into deep reinforcement learning to enhance SOC operations and develop real-time adaptive cloud security mechanisms.


Learning-Aided Physical Layer Attacks Against Multicarrier Communications in IoT

arXiv.org Machine Learning

Internet-of-Things (IoT) devices that are limited in power and processing capabilities are susceptible to physical layer (PHY) spoofing attacks owing to their inability to implement a full-blown protocol stack for security. The overwhelming adoption of multicarrier communications for the PHY layer makes IoT devices further vulnerable to PHY spoofing attacks. These attacks which aim at injecting bogus data into the receiver, involve inferring transmission parameters and finding PHY characteristics of the transmitted signals so as to spoof the received signal. Non-contiguous orthogonal frequency division multiplexing (NC-OFDM) systems have been argued to have low probability of exploitation (LPE) characteristics against classic attacks based on cyclostationary analysis. However, with the advent of machine learning (ML) algorithms, adversaries can devise data-driven attacks to compromise such systems. It is in this vein that PHY spoofing performance of adversaries equipped with supervised and unsupervised ML tools are investigated in this paper. The supervised ML approach is based on estimation/classification utilizing deep neural networks (DNN) while the unsupervised one employs variational autoencoders (VAEs). In particular, VAEs are shown to be capable of learning representations from NC-OFDM signals related to their PHY characteristics such as frequency pattern and modulation scheme, which are useful for PHY spoofing. In addition, a new metric based on the disentanglement principle is proposed to measure the quality of such learned representations. Simulation results demonstrate that the performance of the spoofing adversaries highly depends on the subcarriers' allocation patterns used at the transmitter. Particularly, it is shown that utilizing a random subcarrier occupancy pattern precludes the adversary from spoofing and secures NC-OFDM systems against ML-based attacks.


Robust Deep Reinforcement Learning for Security and Safety in Autonomous Vehicle Systems

arXiv.org Artificial Intelligence

To operate effectively in tomorrow's smart cities, autonomous vehicles (AVs) must rely on intra-vehicle sensors such as camera and radar as well as inter-vehicle communication. Such dependence on sensors and communication links exposes AVs to cyber-physical (CP) attacks by adversaries that seek to take control of the AVs by manipulating their data. Thus, to ensure safe and optimal AV dynamics control, the data processing functions at AVs must be robust to such CP attacks. To this end, in this paper, the state estimation process for monitoring AV dynamics, in presence of CP attacks, is analyzed and a novel adversarial deep reinforcement learning (RL) algorithm is proposed to maximize the robustness of AV dynamics control to CP attacks. The attacker's action and the AV's reaction to CP attacks are studied in a game-theoretic framework. In the formulated game, the attacker seeks to inject faulty data to AV sensor readings so as to manipulate the inter-vehicle optimal safe spacing and potentially increase the risk of AV accidents or reduce the vehicle flow on the roads. Meanwhile, the AV, acting as a defender, seeks to minimize the deviations of spacing so as to ensure robustness to the attacker's actions. Since the AV has no information about the attacker's action and due to the infinite possibilities for data value manipulations, the outcome of the players' past interactions are fed to long-short term memory (LSTM) blocks. Each player's LSTM block learns the expected spacing deviation resulting from its own action and feeds it to its RL algorithm. Then, the the attacker's RL algorithm chooses the action which maximizes the spacing deviation, while the AV's RL algorithm tries to find the optimal action that minimizes such deviation.