Mandal, Aishik
Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities
Mandal, Aishik, Chakraborty, Tanmoy, Gurevych, Iryna
Mental illness is a widespread and debilitating condition with substantial societal and personal costs. Traditional diagnostic and treatment approaches, such as self-reported questionnaires and psychotherapy sessions, often impose significant burdens on both patients and clinicians, limiting accessibility and efficiency. Recent advances in Artificial Intelligence (AI), particularly in Natural Language Processing and multimodal techniques, hold great potential for recognizing and addressing conditions such as depression, anxiety, bipolar disorder, schizophrenia, and post-traumatic stress disorder. However, privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings. These challenges are amplified in multimodal methods, where personal identifiers such as voice and facial data can be misused. This paper presents a critical and comprehensive study of the privacy challenges associated with developing and deploying AI models for mental health. We further prescribe potential solutions, including data anonymization, synthetic data generation, and privacy-preserving model training, to strengthen privacy safeguards in practical applications. Additionally, we discuss evaluation frameworks to assess the privacy-utility trade-offs in these approaches. By addressing these challenges, our work aims to advance the development of reliable, privacy-aware AI tools to support clinical decision-making and improve mental health outcomes.
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark
Romero, David, Lyu, Chenyang, Wibowo, Haryo Akbarianto, Lynn, Teresa, Hamed, Injy, Kishore, Aditya Nanda, Mandal, Aishik, Dragonetti, Alina, Abzaliev, Artem, Tonja, Atnafu Lambebo, Balcha, Bontu Fufa, Whitehouse, Chenxi, Salamea, Christian, Velasco, Dan John, Adelani, David Ifeoluwa, Meur, David Le, Villa-Cueva, Emilio, Koto, Fajri, Farooqui, Fauzan, Belcavello, Frederico, Batnasan, Ganzorig, Vallejo, Gisela, Caulfield, Grainne, Ivetta, Guido, Song, Haiyue, Ademtew, Henok Biadglign, Maina, Hernán, Lovenia, Holy, Azime, Israel Abebe, Cruz, Jan Christian Blaise, Gala, Jay, Geng, Jiahui, Ortiz-Barajas, Jesus-German, Baek, Jinheon, Dunstan, Jocelyn, Alemany, Laura Alonso, Nagasinghe, Kumaranage Ravindu Yasas, Benotti, Luciana, D'Haro, Luis Fernando, Viridiano, Marcelo, Estecha-Garitagoitia, Marcos, Cabrera, Maria Camila Buitrago, Rodríguez-Cantelar, Mario, Jouitteau, Mélanie, Mihaylov, Mihail, Imam, Mohamed Fazli Mohamed, Adilazuarda, Muhammad Farid, Gochoo, Munkhjargal, Otgonbold, Munkh-Erdene, Etori, Naome, Niyomugisha, Olivier, Silva, Paula Mónica, Chitale, Pranjal, Dabre, Raj, Chevi, Rendi, Zhang, Ruochen, Diandaru, Ryandito, Cahyawijaya, Samuel, Góngora, Santiago, Jeong, Soyeong, Purkayastha, Sukannya, Kuribayashi, Tatsuki, Jayakumar, Thanmay, Torrent, Tiago Timponi, Ehsan, Toqeer, Araujo, Vladimir, Kementchedjhieva, Yova, Burzo, Zara, Lim, Zheng Wei, Yong, Zheng Xin, Ignat, Oana, Nwatu, Joan, Mihalcea, Rada, Solorio, Thamar, Aji, Alham Fikri
Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
A Revenue Function for Comparison-Based Hierarchical Clustering
Mandal, Aishik, Perrot, Michaël, Ghoshdastidar, Debarghya
Comparison-based learning addresses the problem of learning when, instead of explicit features or pairwise similarities, one only has access to comparisons of the form: \emph{Object $A$ is more similar to $B$ than to $C$.} Recently, it has been shown that, in Hierarchical Clustering, single and complete linkage can be directly implemented using only such comparisons while several algorithms have been proposed to emulate the behaviour of average linkage. Hence, finding hierarchies (or dendrograms) using only comparisons is a well understood problem. However, evaluating their meaningfulness when no ground-truth nor explicit similarities are available remains an open question. In this paper, we bridge this gap by proposing a new revenue function that allows one to measure the goodness of dendrograms using only comparisons. We show that this function is closely related to Dasgupta's cost for hierarchical clustering that uses pairwise similarities. On the theoretical side, we use the proposed revenue function to resolve the open problem of whether one can approximately recover a latent hierarchy using few triplet comparisons. On the practical side, we present principled algorithms for comparison-based hierarchical clustering based on the maximisation of the revenue and we empirically compare them with existing methods.