Goto

Collaborating Authors

 Mai, Long


REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder

arXiv.org Artificial Intelligence

We present a novel perspective on learning video embedders for generative modeling: rather than requiring an exact reproduction of an input video, an effective embedder should focus on synthesizing visually plausible reconstructions. This relaxed criterion enables substantial improvements in compression ratios without compromising the quality of downstream generative models. Specifically, we propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework that employs a diffusion transformer (DiT) to synthesize missing details from a compact latent space. Therein, we develop a dedicated latent conditioning module to condition the DiT decoder on the encoded video latent embedding. Our experiments demonstrate that our approach enables superior encoding-decoding performance compared to state-of-the-art methods, particularly as the compression ratio increases. To demonstrate the efficacy of our approach, we report results from our video embedders achieving a temporal compression ratio of up to 32x (8x higher than leading video embedders) and validate the robustness of this ultra-compact latent space for text-to-video generation, providing a significant efficiency boost in latent diffusion model training and inference.


Pushing the Boundaries of State Space Models for Image and Video Generation

arXiv.org Artificial Intelligence

While Transformers have become the dominant architecture for visual generation, linear attention models, such as the state-space models (SSM), are increasingly recognized for their efficiency in processing long visual sequences. However, the essential efficiency of these models comes from formulating a limited recurrent state, enforcing causality among tokens that are prone to inconsistent modeling of N-dimensional visual data, leaving questions on their capacity to generate long non-causal sequences. In this paper, we explore the boundary of SSM on image and video generation by building the largest-scale diffusion SSM-Transformer hybrid model to date (5B parameters) based on the sub-quadratic bi-directional Hydra and self-attention, and generate up to 2K images and 360p 8 seconds (16 FPS) videos. Our results demonstrate that the model can produce faithful results aligned with complex text prompts and temporal consistent videos with high dynamics, suggesting the great potential of using SSMs for visual generation tasks.


Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence

arXiv.org Artificial Intelligence

Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (i.e., localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.


Progressive Growing of Video Tokenizers for Highly Compressed Latent Spaces

arXiv.org Artificial Intelligence

Video tokenizers are essential for latent video diffusion models, converting raw video data into spatiotemporally compressed latent spaces for efficient training. However, extending state-of-the-art video tokenizers to achieve a temporal compression ratio beyond 4x without increasing channel capacity poses significant challenges. In this work, we propose an alternative approach to enhance temporal compression. We find that the reconstruction quality of temporally subsampled videos from a low-compression encoder surpasses that of high-compression encoders applied to original videos. This indicates that high-compression models can leverage representations from lower-compression models. Building on this insight, we develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models. Our method includes a cross-level feature-mixing module to retain information from the pretrained low-compression model and guide higher-compression blocks to capture the remaining details from the full video sequence. Evaluation of video benchmarks shows that our method significantly improves reconstruction quality while increasing temporal compression compared to direct extensions of existing video tokenizers. Furthermore, the resulting compact latent space effectively trains a video diffusion model for high-quality video generation with a reduced token budget.


Real-Time Textless Dialogue Generation

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have led to significant progress in text-based dialogue systems. These systems can now generate high-quality responses that are accurate and coherent across a wide range of topics and tasks. However, spoken dialogue systems still lag behind in terms of naturalness. They tend to produce robotic interactions, with issues such as slow response times, overly generic or cautious replies, and a lack of natural rhythm and fluid turn-taking. This shortcoming is largely due to the over-reliance on the traditional cascaded design, which involve separate, sequential components, as well as the use of text as an intermediate representation. This paper propose a real-time, textless spoken dialogue generation model (RTTL-DG) that aims to overcome these challenges. Our system enables fluid turn-taking and generates responses with minimal delay by processing streaming spoken conversation directly. Additionally, our model incorporates backchannels, filters, laughter, and other paralinguistic signals, which are often absent in cascaded dialogue systems, to create more natural and human-like interactions. The implementations and generated samples are available in our repository: https://github.com/mailong25/rts2s-dg


Improving Linguistic Diversity of Large Language Models with Possibility Exploration Fine-Tuning

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) have made significant strides in replicating human-like abilities, there are concerns about a reduction in the linguistic diversity of their outputs. This results in the homogenization of viewpoints and perspectives, as well as the underrepresentation of specific demographic groups. Although several fine-tuning and prompting techniques have been suggested to tackle the issue, they are often tailored to specific tasks or come with a substantial increase in computational cost and latency. This makes them challenging to apply to applications that demand very low latency, such as chatbots and virtual assistants. We propose Possibility Exploration Fine-Tuning (PEFT), a task-agnostic framework that enhances the text diversity of LLMs without increasing latency or computational cost. Given the same prompt, models fine-tuned with PEFT can simultaneously generate multiple diverse responses, each corresponding with a controllable possibility number. Experiments on dialogue and story generation tasks demonstrate that PEFT significantly enhances the diversity of LLM outputs, as evidenced by lower similarity between candidate responses. Since PEFT emphasizes semantic diversity over lexical diversity, it can also notably reduce demographic bias in dialogue systems. The implementations and datasets are available in our repository: https://github.com/mailong25/peft_diversity


SPICED: News Similarity Detection Dataset with Multiple Topics and Complexity Levels

arXiv.org Artificial Intelligence

Nowadays, the use of intelligent systems to detect redundant information in news articles has become especially prevalent with the proliferation of news media outlets in order to enhance user experience. However, the heterogeneous nature of news can lead to spurious findings in these systems: Simple heuristics such as whether a pair of news are both about politics can provide strong but deceptive downstream performance. Segmenting news similarity datasets into topics improves the training of these models by forcing them to learn how to distinguish salient characteristics under more narrow domains. However, this requires the existence of topic-specific datasets, which are currently lacking. In this article, we propose a new dataset of similar news, SPICED, which includes seven topics: Crime & Law, Culture & Entertainment, Disasters & Accidents, Economy & Business, Politics & Conflicts, Science & Technology, and Sports. Futhermore, we present four distinct approaches for generating news pairs, which are used in the creation of datasets specifically designed for news similarity detection task. We benchmarked the created datasets using MinHash, BERT, SBERT, and SimCSE models.


Enhancing conversational quality in language learning chatbots: An evaluation of GPT4 for ASR error correction

arXiv.org Artificial Intelligence

The integration of natural language processing (NLP) technologies into educational applications has shown promising results, particularly in the language learning domain. Recently, many spoken open-domain chatbots have been used as speaking partners, helping language learners improve their language skills. However, one of the significant challenges is the high word-error-rate (WER) when recognizing non-native/non-fluent speech, which interrupts conversation flow and leads to disappointment for learners. This paper explores the use of GPT4 for ASR error correction in conversational settings. In addition to WER, we propose to use semantic textual similarity (STS) and next response sensibility (NRS) metrics to evaluate the impact of error correction models on the quality of the conversation. We find that transcriptions corrected by GPT4 lead to higher conversation quality, despite an increase in WER. GPT4 also outperforms standard error correction methods without the need for in-domain training data.


Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?

arXiv.org Artificial Intelligence

Explaining how important each input feature is to a classifier's decision is critical in high-stake applications. An underlying principle behind dozens of explanation methods is to take the prediction difference between before-and-after an input feature (here, a token) is removed as its attribution - the individual treatment effect in causal inference. A recent method called Input Marginalization (IM) (Kim et al., 2020) uses BERT to replace a token - i.e. simulating the do(.) operator - yielding more plausible counterfactuals. However, our rigorous evaluation using five metrics and on three datasets found IM explanations to be consistently more biased, less accurate, and less plausible than those derived from simply deleting a word.


Out of Order: How important is the sequential order of words in a sentence in Natural Language Understanding tasks?

arXiv.org Artificial Intelligence

Do state-of-the-art natural language understanding models care about word order - one of the most important characteristics of a sequence? Not always! We found 75% to 90% of the correct predictions of BERT-based classifiers, trained on many GLUE tasks, remain constant after input words are randomly shuffled. Despite BERT embeddings are famously contextual, the contribution of each individual word to downstream tasks is almost unchanged even after the word's context is shuffled. BERT-based models are able to exploit superficial cues (e.g. the sentiment of keywords in sentiment analysis; or the word-wise similarity between sequence-pair inputs in natural language inference) to make correct decisions when tokens are arranged in random orders. Encouraging classifiers to capture word order information improves the performance on most GLUE tasks, SQuAD 2.0 and out-of-samples. Our work suggests that many GLUE tasks are not challenging machines to understand the meaning of a sentence.