Mahajan, Khyati
Prompting with Phonemes: Enhancing LLM Multilinguality for non-Latin Script Languages
Nguyen, Hoang, Mahajan, Khyati, Yadav, Vikas, Yu, Philip S., Hashemi, Masoud, Maheshwary, Rishabh
Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Maheshwary, Rishabh, Yadav, Vikas, Nguyen, Hoang, Mahajan, Khyati, Madhusudhan, Sathwik Tejaswi
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. While many effective IFT datasets have been introduced recently, they predominantly focus on high-resource languages like English. To better align LLMs across a broad spectrum of languages and tasks, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual. It is constructed by first selecting a diverse set of seed examples and then utilizing the proposed Evol taxonomy to convert these seeds into complex and challenging multi-turn instructions. We demonstrate the effectiveness of M2Lingual by training LLMs of varying sizes and showcasing the enhanced performance across a diverse set of languages. We contribute the 2 step Evol taxonomy with the guided generation code: https://github.com/ServiceNow/M2Lingual, as well as the first fully synthetic, general and task-oriented, multi-turn, multilingual dataset built with Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/ M2Lingual - containing 182K total IFT pairs, covering 70 languages and 17+ NLP tasks.
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Gehrmann, Sebastian, Adewumi, Tosin, Aggarwal, Karmanya, Ammanamanchi, Pawan Sasanka, Anuoluwapo, Aremu, Bosselut, Antoine, Chandu, Khyathi Raghavi, Clinciu, Miruna, Das, Dipanjan, Dhole, Kaustubh D., Du, Wanyu, Durmus, Esin, Dušek, Ondřej, Emezue, Chris, Gangal, Varun, Garbacea, Cristina, Hashimoto, Tatsunori, Hou, Yufang, Jernite, Yacine, Jhamtani, Harsh, Ji, Yangfeng, Jolly, Shailza, Kumar, Dhruv, Ladhak, Faisal, Madaan, Aman, Maddela, Mounica, Mahajan, Khyati, Mahamood, Saad, Majumder, Bodhisattwa Prasad, Martins, Pedro Henrique, McMillan-Major, Angelina, Mille, Simon, van Miltenburg, Emiel, Nadeem, Moin, Narayan, Shashi, Nikolaev, Vitaly, Niyongabo, Rubungo Andre, Osei, Salomey, Parikh, Ankur, Perez-Beltrachini, Laura, Rao, Niranjan Ramesh, Raunak, Vikas, Rodriguez, Juan Diego, Santhanam, Sashank, Sedoc, João, Sellam, Thibault, Shaikh, Samira, Shimorina, Anastasia, Cabezudo, Marco Antonio Sobrevilla, Strobelt, Hendrik, Subramani, Nishant, Xu, Wei, Yang, Diyi, Yerukola, Akhila, Zhou, Jiawei
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. However, due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of corpora and evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the initial release for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.