Mahajan, Aditya
A Theoretical Justification for Asymmetric Actor-Critic Algorithms
Lambrechts, Gaspard, Ernst, Damien, Mahajan, Aditya
In reinforcement learning for partially observable environments, many successful algorithms were developed within the asymmetric learning paradigm. This paradigm leverages additional state information available at training time for faster learning. Although the proposed learning objectives are usually theoretically sound, these methods still lack a theoretical justification for their potential benefits. We propose such a justification for asymmetric actor-critic algorithms with linear function approximators by adapting a finite-time convergence analysis to this setting. The resulting finite-time bound reveals that the asymmetric critic eliminates an error term arising from aliasing in the agent state.
Concentration of Cumulative Reward in Markov Decision Processes
Sayedana, Borna, Caines, Peter E., Mahajan, Aditya
In this paper, we investigate the concentration properties of cumulative rewards in Markov Decision Processes (MDPs), focusing on both asymptotic and non-asymptotic settings. We introduce a unified approach to characterize reward concentration in MDPs, covering both infinite-horizon settings (i.e., average and discounted reward frameworks) and finite-horizon setting. Our asymptotic results include the law of large numbers, the central limit theorem, and the law of iterated logarithms, while our non-asymptotic bounds include Azuma-Hoeffding-type inequalities and a non-asymptotic version of the law of iterated logarithms. Additionally, we explore two key implications of our results. First, we analyze the sample path behavior of the difference in rewards between any two stationary policies. Second, we show that two alternative definitions of regret for learning policies proposed in the literature are rate-equivalent. Our proof techniques rely on a novel martingale decomposition of cumulative rewards, properties of the solution to the policy evaluation fixed-point equation, and both asymptotic and non-asymptotic concentration results for martingale difference sequences.
Agent-state based policies in POMDPs: Beyond belief-state MDPs
Sinha, Amit, Mahajan, Aditya
The traditional approach to POMDPs is to convert them into fully observed MDPs by considering a belief state as an information state. However, a belief-state based approach requires perfect knowledge of the system dynamics and is therefore not applicable in the learning setting where the system model is unknown. Various approaches to circumvent this limitation have been proposed in the literature. We present a unified treatment of some of these approaches by viewing them as models where the agent maintains a local recursively updateable agent state and chooses actions based on the agent state. We highlight the different classes of agent-state based policies and the various approaches that have been proposed in the literature to find good policies within each class. These include the designer's approach to find optimal non-stationary agent-state based policies, policy search approaches to find a locally optimal stationary agent-state based policies, and the approximate information state to find approximately optimal stationary agent-state based policies. We then present how ideas from the approximate information state approach have been used to improve Q-learning and actor-critic algorithms for learning in POMDPs.
Periodic agent-state based Q-learning for POMDPs
Sinha, Amit, Geist, Mathieu, Mahajan, Aditya
The standard approach for Partially Observable Markov Decision Processes (POMDPs) is to convert them to a fully observed belief-state MDP. However, the belief state depends on the system model and is therefore not viable in reinforcement learning (RL) settings. A widely used alternative is to use an agent state, which is a model-free, recursively updateable function of the observation history. Examples include frame stacking and recurrent neural networks. Since the agent state is model-free, it is used to adapt standard RL algorithms to POMDPs. However, standard RL algorithms like Q-learning learn a stationary policy. Our main thesis that we illustrate via examples is that because the agent state does not satisfy the Markov property, non-stationary agent-state based policies can outperform stationary ones. To leverage this feature, we propose PASQL (periodic agent-state based Q-learning), which is a variant of agent-state-based Q-learning that learns periodic policies. By combining ideas from periodic Markov chains and stochastic approximation, we rigorously establish that PASQL converges to a cyclic limit and characterize the approximation error of the converged periodic policy. Finally, we present a numerical experiment to highlight the salient features of PASQL and demonstrate the benefit of learning periodic policies over stationary policies.
Model approximation in MDPs with unbounded per-step cost
Bozkurt, Berk, Mahajan, Aditya, Nayyar, Ashutosh, Ouyang, Yi
We consider the problem of designing a control policy for an infinite-horizon discounted cost Markov decision process $\mathcal{M}$ when we only have access to an approximate model $\hat{\mathcal{M}}$. How well does an optimal policy $\hat{\pi}^{\star}$ of the approximate model perform when used in the original model $\mathcal{M}$? We answer this question by bounding a weighted norm of the difference between the value function of $\hat{\pi}^\star $ when used in $\mathcal{M}$ and the optimal value function of $\mathcal{M}$. We then extend our results and obtain potentially tighter upper bounds by considering affine transformations of the per-step cost. We further provide upper bounds that explicitly depend on the weighted distance between cost functions and weighted distance between transition kernels of the original and approximate models. We present examples to illustrate our results.
Bridging State and History Representations: Understanding Self-Predictive RL
Ni, Tianwei, Eysenbach, Benjamin, Seyedsalehi, Erfan, Ma, Michel, Gehring, Clement, Mahajan, Aditya, Bacon, Pierre-Luc
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially observable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of practical guidelines for RL practitioners.
Mean-field games among teams
Subramanian, Jayakumar, Kumar, Akshat, Mahajan, Aditya
In this paper, we present a model of a game among teams. Each team consists of a homogeneous population of agents. Agents within a team are cooperative while the teams compete with other teams. The dynamics and the costs are coupled through the empirical distribution (or the mean field) of the state of agents in each team. This mean-field is assumed to be observed by all agents. Agents have asymmetric information (also called a non-classical information structure). We propose a mean-field based refinement of the Team-Nash equilibrium of the game, which we call mean-field Markov perfect equilibrium (MF-MPE). We identify a dynamic programming decomposition to characterize MF-MPE. We then consider the case where each team has a large number of players and present a mean-field approximation which approximates the game among large-population teams as a game among infinite-population teams. We show that MF-MPE of the game among teams of infinite population is easier to compute and is an $\varepsilon$-approximate MF-MPE of the game among teams of finite population.
Dealing With Non-stationarity in Decentralized Cooperative Multi-Agent Deep Reinforcement Learning via Multi-Timescale Learning
Nekoei, Hadi, Badrinaaraayanan, Akilesh, Sinha, Amit, Amini, Mohammad, Rajendran, Janarthanan, Mahajan, Aditya, Chandar, Sarath
Decentralized cooperative multi-agent deep reinforcement learning (MARL) can be a versatile learning framework, particularly in scenarios where centralized training is either not possible or not practical. One of the critical challenges in decentralized deep MARL is the non-stationarity of the learning environment when multiple agents are learning concurrently. A commonly used and efficient scheme for decentralized MARL is independent learning in which agents concurrently update their policies independently of each other. We first show that independent learning does not always converge, while sequential learning where agents update their policies one after another in a sequence is guaranteed to converge to an agent-by-agent optimal solution. In sequential learning, when one agent updates its policy, all other agent's policies are kept fixed, alleviating the challenge of non-stationarity due to simultaneous updates in other agents' policies. However, it can be slow because only one agent is learning at any time. Therefore it might also not always be practical. In this work, we propose a decentralized cooperative MARL algorithm based on multi-timescale learning. In multi-timescale learning, all agents learn simultaneously, but at different learning rates. In our proposed method, when one agent updates its policy, other agents are allowed to update their policies as well, but at a slower rate. This speeds up sequential learning, while also minimizing non-stationarity caused by other agents updating concurrently. Multi-timescale learning outperforms state-of-the-art decentralized learning methods on a set of challenging multi-agent cooperative tasks in the epymarl(Papoudakis et al., 2020) benchmark. This can be seen as a first step towards more general decentralized cooperative deep MARL methods based on multi-timescale learning.
Approximate information state based convergence analysis of recurrent Q-learning
Seyedsalehi, Erfan, Akbarzadeh, Nima, Sinha, Amit, Mahajan, Aditya
In spite of the large literature on reinforcement learning (RL) algorithms for partially observable Markov decision processes (POMDPs), a complete theoretical understanding is still lacking. In a partially observable setting, the history of data available to the agent increases over time so most practical algorithms either truncate the history to a finite window or compress it using a recurrent neural network leading to an agent state that is non-Markovian. In this paper, it is shown that in spite of the lack of the Markov property, recurrent Q-learning (RQL) converges in the tabular setting. Moreover, it is shown that the quality of the converged limit depends on the quality of the representation which is quantified in terms of what is known as an approximate information state (AIS). Based on this characterization of the approximation error, a variant of RQL with AIS losses is presented. This variant performs better than a strong baseline for RQL that does not use AIS losses. It is demonstrated that there is a strong correlation between the performance of RQL over time and the loss associated with the AIS representation.
On learning Whittle index policy for restless bandits with scalable regret
Akbarzadeh, Nima, Mahajan, Aditya
Reinforcement learning is an attractive approach to learn good resource allocation and scheduling policies based on data when the system model is unknown. However, the cumulative regret of most RL algorithms scales as $\tilde O(\mathsf{S} \sqrt{\mathsf{A} T})$, where $\mathsf{S}$ is the size of the state space, $\mathsf{A}$ is the size of the action space, $T$ is the horizon, and the $\tilde{O}(\cdot)$ notation hides logarithmic terms. Due to the linear dependence on the size of the state space, these regret bounds are prohibitively large for resource allocation and scheduling problems. In this paper, we present a model-based RL algorithm for such problems which has scalable regret. In particular, we consider a restless bandit model, and propose a Thompson-sampling based learning algorithm which is tuned to the underlying structure of the model. We present two characterizations of the regret of the proposed algorithm with respect to the Whittle index policy. First, we show that for a restless bandit with $n$ arms and at most $m$ activations at each time, the regret scales either as $\tilde{O}(mn\sqrt{T})$ or $\tilde{O}(n^2 \sqrt{T})$ depending on the reward model. Second, under an additional technical assumption, we show that the regret scales as $\tilde{O}(n^{1.5} \sqrt{T})$ or $\tilde{O}(\max\{m\sqrt{n}, n\} \sqrt{T})$. We present numerical examples to illustrate the salient features of the algorithm.