Mahadevan, Vijay
DocKD: Knowledge Distillation from LLMs for Open-World Document Understanding Models
Kim, Sungnyun, Liao, Haofu, Appalaraju, Srikar, Tang, Peng, Tu, Zhuowen, Satzoda, Ravi Kumar, Manmatha, R., Mahadevan, Vijay, Soatto, Stefano
Visual document understanding (VDU) is a challenging task that involves understanding documents across various modalities (text and image) and layouts (forms, tables, etc.). This study aims to enhance generalizability of small VDU models by distilling knowledge from LLMs. We identify that directly prompting LLMs often fails to generate informative and useful data. In response, we present a new framework (called DocKD) that enriches the data generation process by integrating external document knowledge. Specifically, we provide an LLM with various document elements like key-value pairs, layouts, and descriptions, to elicit open-ended answers. Our experiments show that DocKD produces high-quality document annotations and surpasses the direct knowledge distillation approach that does not leverage external document knowledge. Moreover, student VDU models trained with solely DocKD-generated data are not only comparable to those trained with human-annotated data on in-domain tasks but also significantly excel them on out-of-domain tasks.
Multiple-Question Multiple-Answer Text-VQA
Tang, Peng, Appalaraju, Srikar, Manmatha, R., Xie, Yusheng, Mahadevan, Vijay
We present Multiple-Question Multiple-Answer (MQMA), a novel approach to do text-VQA in encoder-decoder transformer models. The text-VQA task requires a model to answer a question by understanding multi-modal content: text (typically from OCR) and an associated image. To the best of our knowledge, almost all previous approaches for text-VQA process a single question and its associated content to predict a single answer. In order to answer multiple questions from the same image, each question and content are fed into the model multiple times. In contrast, our proposed MQMA approach takes multiple questions and content as input at the encoder and predicts multiple answers at the decoder in an auto-regressive manner at the same time. We make several novel architectural modifications to standard encoder-decoder transformers to support MQMA. We also propose a novel MQMA denoising pre-training task which is designed to teach the model to align and delineate multiple questions and content with associated answers. MQMA pre-trained model achieves state-of-the-art results on multiple text-VQA datasets, each with strong baselines. Specifically, on OCR-VQA (+2.5%), TextVQA (+1.4%), ST-VQA (+0.6%), DocVQA (+1.1%) absolute improvements over the previous state-of-the-art approaches.
DEED: Dynamic Early Exit on Decoder for Accelerating Encoder-Decoder Transformer Models
Tang, Peng, Zhu, Pengkai, Li, Tian, Appalaraju, Srikar, Mahadevan, Vijay, Manmatha, R.
Encoder-decoder transformer models have achieved great success on various vision-language (VL) tasks, but they suffer from high inference latency. Typically, the decoder takes up most of the latency because of the auto-regressive decoding. To accelerate the inference, we propose an approach of performing Dynamic Early Exit on Decoder (DEED). We build a multi-exit encoder-decoder transformer model which is trained with deep supervision so that each of its decoder layers is capable of generating plausible predictions. In addition, we leverage simple yet practical techniques, including shared generation head and adaptation modules, to keep accuracy when exiting at shallow decoder layers. Based on the multi-exit model, we perform step-level dynamic early exit during inference, where the model may decide to use fewer decoder layers based on its confidence of the current layer at each individual decoding step. Considering different number of decoder layers may be used at different decoding steps, we compute deeper-layer decoder features of previous decoding steps just-in-time, which ensures the features from different decoding steps are semantically aligned. We evaluate our approach with two state-of-the-art encoder-decoder transformer models on various VL tasks. We show our approach can reduce overall inference latency by 30%-60% with comparable or even higher accuracy compared to baselines.
Toward Understanding Catastrophic Forgetting in Continual Learning
Nguyen, Cuong V., Achille, Alessandro, Lam, Michael, Hassner, Tal, Mahadevan, Vijay, Soatto, Stefano
We study the relationship between catastrophic forgetting and properties of task sequences. In particular, given a sequence of tasks, we would like to understand which properties of this sequence influence the error rates of continual learning algorithms trained on the sequence. To this end, we propose a new procedure that makes use of recent developments in task space modeling as well as correlation analysis to specify and analyze the properties we are interested in. As an application, we apply our procedure to study two properties of a task sequence: (1) total complexity and (2) sequential heterogeneity. We show that error rates are strongly and positively correlated to a task sequence's total complexity for some state-of-the-art algorithms. We also show that, surprisingly, the error rates have no or even negative correlations in some cases to sequential heterogeneity. Our findings suggest directions for improving continual learning benchmarks and methods.
On the connections between saliency and tracking
Mahadevan, Vijay, Vasconcelos, Nuno
A model connecting visual tracking and saliency has recently been proposed. This model is based on the saliency hypothesis for tracking which postulates that tracking is achieved by the top-down tuning, based on target features, of discriminant center-surround saliency mechanisms over time. In this work, we identify three main predictions that must hold if the hypothesis were true: 1) tracking reliability should be larger for salient than for non-salient targets, 2) tracking reliability should have a dependence on the defining variables of saliency, namely feature contrast and distractor heterogeneity, and must replicate the dependence of saliency on these variables, and 3) saliency and tracking can be implemented with common low level neural mechanisms. We confirm that the first two predictions hold by reporting results from a set of human behavior studies on the connection between saliency and tracking. We also show that the third prediction holds by constructing a common neurophysiologically plausible architecture that can computationally solve both saliency and tracking. This architecture is fully compliant with the standard physiological models of V1 and MT, and with what is known about attentional control in area LIP, while explaining the results of the human behavior experiments.
Maximum Covariance Unfolding : Manifold Learning for Bimodal Data
Mahadevan, Vijay, Wong, Chi W., Pereira, Jose C., Liu, Tom, Vasconcelos, Nuno, Saul, Lawrence K.
We propose maximum covariance unfolding (MCU), a manifold learning algorithm for simultaneous dimensionality reduction of data from different input modalities. Given high dimensional inputs from two different but naturally aligned sources, MCU computes a common low dimensional embedding that maximizes the cross-modal (inter-source) correlations while preserving the local (intra-source) distances. In this paper, we explore two applications of MCU. First we use MCU to analyze EEG-fMRI data, where an important goal is to visualize the fMRI voxels that are most strongly correlated with changes in EEG traces. To perform this visualization, we augment MCU with an additional step for metric learning in the high dimensional voxel space. Second, we use MCU to perform cross-modal retrieval of matched image and text samples from Wikipedia. To manage large applications of MCU, we develop a fast implementation based on ideas from spectral graph theory. These ideas transform the original problem for MCU, one of semidefinite programming, into a simpler problem in semidefinite quadratic linear programming.
The discriminant center-surround hypothesis for bottom-up saliency
Gao, Dashan, Mahadevan, Vijay, Vasconcelos, Nuno
The classical hypothesis, that bottom-up saliency is a center-surround process, is combined with a more recent hypothesis that all saliency decisions are optimal in a decision-theoretic sense. The combined hypothesis is denoted as discriminant center-surround saliency, and the corresponding optimal saliency architecture is derived. This architecture equates the saliency of each image location to the discriminant power of a set of features with respect to the classification problem that opposes stimuli at center and surround, at that location. It is shown that the resulting saliency detector makes accurate quantitative predictions for various aspects of the psychophysics of human saliency, including non-linear properties beyond the reach of previous saliency models. Furthermore, it is shown that discriminant center-surround saliency can be easily generalized to various stimulus modalities (such as color, orientation and motion), and provides optimal solutions for many other saliency problems of interest for computer vision. Optimal solutions, under this hypothesis, are derived for a number of the former (including static natural images, dense motion fields, and even dynamic textures), and applied to a number of the latter (the prediction of human eye fixations, motion-based saliency in the presence of ego-motion, and motion-based saliency in the presence of highly dynamic backgrounds). In result, discriminant saliency is shown to predict eye fixations better than previous models, and produce background subtraction algorithms that outperform the state-of-the-art in computer vision.