Goto

Collaborating Authors

 Magka, Despoina


MLGym: A New Framework and Benchmark for Advancing AI Research Agents

arXiv.org Artificial Intelligence

We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing LLM agents on AI research tasks. This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents. MLGym-bench consists of 13 diverse and open-ended AI research tasks from diverse domains such as computer vision, natural language processing, reinforcement learning, and game theory. Solving these tasks requires real-world AI research skills such as generating new ideas and hypotheses, creating and processing data, implementing ML methods, training models, running experiments, analyzing the results, and iterating through this process to improve on a given task. We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro. Our MLGym framework makes it easy to add new tasks, integrate and evaluate models or agents, generate synthetic data at scale, as well as develop new learning algorithms for training agents on AI research tasks. We find that current frontier models can improve on the given baselines, usually by finding better hyperparameters, but do not generate novel hypotheses, algorithms, architectures, or substantial improvements. We open-source our framework and benchmark to facilitate future research in advancing the AI research capabilities of LLM agents.


Computing Stable Models for Nonmonotonic Existential Rules

AAAI Conferences

In this work, we consider function-free existential rules extended with nonmonotonic negation under a stable model semantics. We present new acyclicity and stratification conditions that identify a large class of rule sets having finite, unique stable models, and we show how the addition of constraints on the input facts can further extend this class. Checking these conditions is computationally feasible, and we provide tight complexity bounds. Finally, we demonstrate how these new methods allowed us to solve relevant reasoning problems over a real-world knowledge base from biochemistry using an off-the-shelf answer set programming engine.