Magdamo, Colin
Evaluating GPT's Capability in Identifying Stages of Cognitive Impairment from Electronic Health Data
Leng, Yu, He, Yingnan, Magdamo, Colin, Vranceanu, Ana-Maria, Ritchie, Christine S., Mukerji, Shibani S., Moura, Lidia M. V. R., Dickson, John R., Blacker, Deborah, Das, Sudeshna
Identifying cognitive impairment within electronic health records (EHRs) is crucial not only for timely diagnoses but also for facilitating research. Information about cognitive impairment often exists within unstructured clinician notes in EHRs, but manual chart reviews are both time-consuming and error-prone. To address this issue, our study evaluates an automated approach using zero-shot GPT-4o to determine stage of cognitive impairment in two different tasks. First, we evaluated the ability of GPT-4o to determine the global Clinical Dementia Rating (CDR) on specialist notes from 769 patients who visited the memory clinic at Massachusetts General Hospital (MGH), and achieved a weighted kappa score of 0.83. Second, we assessed GPT-4o's ability to differentiate between normal cognition, mild cognitive impairment (MCI), and dementia on all notes in a 3-year window from 860 Medicare patients. GPT-4o attained a weighted kappa score of 0.91 in comparison to specialist chart reviews and 0.96 on cases that the clinical adjudicators rated with high confidence. Our findings demonstrate GPT-4o's potential as a scalable chart review tool for creating research datasets and assisting diagnosis in clinical settings in the future.
Leveraging Pre-trained and Transformer-derived Embeddings from EHRs to Characterize Heterogeneity Across Alzheimer's Disease and Related Dementias
West, Matthew, Magdamo, Colin, Cheng, Lily, He, Yingnan, Das, Sudeshna
Alzheimer's disease is a progressive, debilitating neurodegenerative disease that affects 50 million people globally. Despite this substantial health burden, available treatments for the disease are limited and its fundamental causes remain poorly understood. Previous work has suggested the existence of clinically-meaningful sub-types, which it is suggested may correspond to distinct etiologies, disease courses, and ultimately appropriate treatments. Here, we use unsupervised learning techniques on electronic health records (EHRs) from a cohort of memory disorder patients to characterise heterogeneity in this disease population. Pre-trained embeddings for medical codes as well as transformer-derived Clinical BERT embeddings of free text are used to encode patient EHRs. We identify the existence of sub-populations on the basis of comorbidities and shared textual features, and discuss their clinical significance.
Cortical analysis of heterogeneous clinical brain MRI scans for large-scale neuroimaging studies
Gopinath, Karthik, Greve, Douglas N., Das, Sudeshna, Arnold, Steve, Magdamo, Colin, Iglesias, Juan Eugenio
Surface analysis of the cortex is ubiquitous in human neuroimaging with MRI, e.g., for cortical registration, parcellation, or thickness estimation. The convoluted cortical geometry requires isotropic scans (e.g., 1mm MPRAGEs) and good gray-white matter contrast for 3D reconstruction. This precludes the analysis of most brain MRI scans acquired for clinical purposes. Analyzing such scans would enable neuroimaging studies with sample sizes that cannot be achieved with current research datasets, particularly for underrepresented populations and rare diseases. Here we present the first method for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and pulse sequence. The methods has a learning component and a classical optimization module. The former uses domain randomization to train a CNN that predicts an implicit representation of the white matter and pial surfaces (a signed distance function) at 1mm isotropic resolution, independently of the pulse sequence and resolution of the input. The latter uses geometry processing to place the surfaces while accurately satisfying topological and geometric constraints, thus enabling subsequent parcellation and thickness estimation with existing methods. We present results on 5mm axial FLAIR scans from ADNI and on a highly heterogeneous clinical dataset with 5,000 scans.