Maes, Pattie
NeuroChat: A Neuroadaptive AI Chatbot for Customizing Learning Experiences
Baradari, Dünya, Kosmyna, Nataliya, Petrov, Oscar, Kaplun, Rebecah, Maes, Pattie
Generative AI is transforming education by enabling personalized, on-demand learning experiences. However, AI tutors lack the ability to assess a learner's cognitive state in real time, limiting their adaptability. Meanwhile, electroencephalography (EEG)-based neuroadaptive systems have successfully enhanced engagement by dynamically adjusting learning content. This paper presents NeuroChat, a proof-of-concept neuroadaptive AI tutor that integrates real-time EEG-based engagement tracking with generative AI. NeuroChat continuously monitors a learner's cognitive engagement and dynamically adjusts content complexity, response style, and pacing using a closed-loop system. We evaluate this approach in a pilot study (n=24), comparing NeuroChat to a standard LLM-based chatbot. Results indicate that NeuroChat enhances cognitive and subjective engagement but does not show an immediate effect on learning outcomes. These findings demonstrate the feasibility of real-time cognitive feedback in LLMs, highlighting new directions for adaptive learning, AI tutoring, and human-AI interaction.
AI persuading AI vs AI persuading Humans: LLMs' Differential Effectiveness in Promoting Pro-Environmental Behavior
Doudkin, Alexander, Pataranutaporn, Pat, Maes, Pattie
Pro-environmental behavior (PEB) is vital to combat climate change, yet turning awareness into intention and action remains elusive. We explore large language models (LLMs) as tools to promote PEB, comparing their impact across 3,200 participants: real humans (n=1,200), simulated humans based on actual participant data (n=1,200), and fully synthetic personas (n=1,200). All three participant groups faced personalized or standard chatbots, or static statements, employing four persuasion strategies (moral foundations, future self-continuity, action orientation, or "freestyle" chosen by the LLM). Results reveal a "synthetic persuasion paradox": synthetic and simulated agents significantly affect their post-intervention PEB stance, while human responses barely shift. Simulated participants better approximate human trends but still overestimate effects. This disconnect underscores LLM's potential for pre-evaluating PEB interventions but warns of its limits in predicting real-world behavior. We call for refined synthetic modeling and sustained and extended human trials to align conversational AI's promise with tangible sustainability outcomes.
Algorithmic Inheritance: Surname Bias in AI Decisions Reinforces Intergenerational Inequality
Pataranutaporn, Pat, Powdthavee, Nattavudh, Maes, Pattie
Surnames often convey implicit markers of social status, wealth, and lineage, shaping perceptions in ways that can perpetuate systemic biases and intergenerational inequality. This study is the first of its kind to investigate whether and how surnames influence AI-driven decision-making, focusing on their effects across key areas such as hiring recommendations, leadership appointments, and loan approvals. Using 72,000 evaluations of 600 surnames from the United States and Thailand, two countries with distinct sociohistorical contexts and surname conventions, we classify names into four categories: Rich, Legacy, Normal, and phonetically similar Variant groups. Our findings show that elite surnames consistently increase AI-generated perceptions of power, intelligence, and wealth, which in turn influence AI-driven decisions in high-stakes contexts. Mediation analysis reveals perceived intelligence as a key mechanism through which surname biases influence AI decision-making process. While providing objective qualifications alongside surnames mitigates most of these biases, it does not eliminate them entirely, especially in contexts where candidate credentials are low. These findings highlight the need for fairness-aware algorithms and robust policy measures to prevent AI systems from reinforcing systemic inequalities tied to surnames, an often-overlooked bias compared to more salient characteristics such as race and gender. Our work calls for a critical reassessment of algorithmic accountability and its broader societal impact, particularly in systems designed to uphold meritocratic principles while counteracting the perpetuation of intergenerational privilege.
OceanChat: The Effect of Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change
Pataranutaporn, Pat, Doudkin, Alexander, Maes, Pattie
Marine ecosystems face unprecedented threats from climate change and plastic pollution, yet traditional environmental education often struggles to translate awareness into sustained behavioral change. This paper presents OceanChat, an interactive system leveraging large language models to create conversational AI agents represented as animated marine creatures -- specifically a beluga whale, a jellyfish, and a seahorse -- designed to promote environmental behavior (PEB) and foster awareness through personalized dialogue. Through a between-subjects experiment (N=900), we compared three conditions: (1) Static Scientific Information, providing conventional environmental education through text and images; (2) Static Character Narrative, featuring first-person storytelling from 3D-rendered marine creatures; and (3) Conversational Character Narrative, enabling real-time dialogue with AI-powered marine characters. Our analysis revealed that the Conversational Character Narrative condition significantly increased behavioral intentions and sustainable choice preferences compared to static approaches. The beluga whale character demonstrated consistently stronger emotional engagement across multiple measures, including perceived anthropomorphism and empathy. However, impacts on deeper measures like climate policy support and psychological distance were limited, highlighting the complexity of shifting entrenched beliefs. Our work extends research on sustainability interfaces facilitating PEB and offers design principles for creating emotionally resonant, context-aware AI characters. By balancing anthropomorphism with species authenticity, OceanChat demonstrates how interactive narratives can bridge the gap between environmental knowledge and real-world behavior change.
Can AI Solve the Peer Review Crisis? A Large Scale Experiment on LLM's Performance and Biases in Evaluating Economics Papers
Pataranutaporn, Pat, Powdthavee, Nattavudh, Maes, Pattie
We investigate whether artificial intelligence can address the peer review crisis in economics by analyzing 27,090 evaluations of 9,030 unique submissions using a large language model (LLM). The experiment systematically varies author characteristics (e.g., affiliation, reputation, gender) and publication quality (e.g., top-tier, mid-tier, low-tier, AI generated papers). The results indicate that LLMs effectively distinguish paper quality but exhibit biases favoring prominent institutions, male authors, and renowned economists. Additionally, LLMs struggle to differentiate high-quality AI-generated papers from genuine top-tier submissions. While LLMs offer efficiency gains, their susceptibility to bias necessitates cautious integration and hybrid peer review models to balance equity and accuracy.
Future You: A Conversation with an AI-Generated Future Self Reduces Anxiety, Negative Emotions, and Increases Future Self-Continuity
Pataranutaporn, Pat, Winson, Kavin, Yin, Peggy, Lapapirojn, Auttasak, Ouppaphan, Pichayoot, Lertsutthiwong, Monchai, Maes, Pattie, Hershfield, Hal
We introduce "Future You," an interactive, brief, single-session, digital chat intervention designed to improve future self-continuity--the degree of connection an individual feels with a temporally distant future self--a characteristic that is positively related to mental health and wellbeing. Our system allows users to chat with a relatable yet AI-powered virtual version of their future selves that is tuned to their future goals and personal qualities. To make the conversation realistic, the system generates a "synthetic memory"--a unique backstory for each user--that creates a throughline between the user's present age (between 18-30) and their life at age 60. The "Future You" character also adopts the persona of an age-progressed image of the user's present self. After a brief interaction with the "Future You" character, users reported decreased anxiety, and increased future self-continuity. This is the first study successfully demonstrating the use of personalized AI-generated characters to improve users' future self-continuity and wellbeing.
Enabling Waypoint Generation for Collaborative Robots using LLMs and Mixed Reality
Fang, Cathy Mengying, Zieliński, Krzysztof, Maes, Pattie, Paradiso, Joe, Blumberg, Bruce, Kjærgaard, Mikkel Baun
Programming a robotic is a complex task, as it demands the user to have a good command of specific programming languages and awareness of the robot's physical constraints. We propose a framework that simplifies robot deployment by allowing direct communication using natural language. It uses large language models (LLM) for prompt processing, workspace understanding, and waypoint generation. It also employs Augmented Reality (AR) to provide visual feedback of the planned outcome. We showcase the effectiveness of our framework with a simple pick-and-place task, which we implement on a real robot. Moreover, we present an early concept of expressive robot behavior and skill generation that can be used to communicate with the user and learn new skills (e.g., object grasping).
PAL: Intelligence Augmentation using Egocentric Visual Context Detection
Khan, Mina, Maes, Pattie
Egocentric visual context detection can support intelligence augmentation applications. We created a wearable system, called PAL, for wearable, personalized, and privacy-preserving egocentric visual context detection. PAL has a wearable device with a camera, heart-rate sensor, on-device deep learning, and audio input/output. PAL also has a mobile/web application for personalized context labeling. We used on-device deep learning models for generic object and face detection, low-shot custom face and context recognition (e.g., activities like brushing teeth), and custom context clustering (e.g., indoor locations). The models had over 80\% accuracy in in-the-wild contexts (~1000 images) and we tested PAL for intelligence augmentation applications like behavior change. We have made PAL is open-source to further support intelligence augmentation using personalized and privacy-preserving egocentric visual contexts.
Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings
Sarawgi, Utkarsh, Khincha, Rishab, Zulfikar, Wazeer, Ghosh, Satrajit, Maes, Pattie
Reliability of machine learning (ML) systems is crucial in safety-critical applications such as healthcare, and uncertainty estimation is a widely researched method to highlight the confidence of ML systems in deployment. Sequential and parallel ensemble techniques have shown improved performance of ML systems in multi-modal settings by leveraging the feature sets together. We propose an uncertainty-aware boosting technique for multi-modal ensembling in order to focus on the data points with higher associated uncertainty estimates, rather than the ones with higher loss values. We evaluate this method on healthcare tasks related to Dementia and Parkinson's disease which involve real-world multi-modal speech and text data, wherein our method shows an improved performance. Additional analysis suggests that introducing uncertainty-awareness into the boosted ensembles decreases the overall entropy of the system, making it more robust to heteroscedasticity in the data, as well as better calibrating each of the modalities along with high quality prediction intervals. We open-source our entire codebase at https://github.com/usarawgi911/Uncertainty-aware-boosting
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
Sarawgi, Utkarsh, Zulfikar, Wazeer, Khincha, Rishab, Maes, Pattie
Understanding and quantifying uncertainty in black box Neural Networks (NNs) is critical when deployed in real-world settings such as healthcare. Recent works using Bayesian and non-Bayesian methods have shown how a unified predictive uncertainty can be modelled for NNs. Decomposing this uncertainty to disentangle the granular sources of heteroscedasticity in data provides rich information about its underlying causes. We propose a conceptually simple non-Bayesian approach, deep split ensemble, to disentangle the predictive uncertainties using a multivariate Gaussian mixture model. The NNs are trained with clusters of input features, for uncertainty estimates per cluster. We evaluate our approach on a series of benchmark regression datasets, while also comparing with unified uncertainty methods. Extensive analyses using dataset shits and empirical rule highlight our inherently well-calibrated models. Our work further demonstrates its applicability in a multi-modal setting using a benchmark Alzheimer's dataset and also shows how deep split ensembles can highlight hidden modality-specific biases. The minimal changes required to NNs and the training procedure, and the high flexibility to group features into clusters makes it readily deployable and useful. The source code is available at https://github.com/wazeerzulfikar/deep-split-ensembles