Madiraju, Naveen
Enhancing Trust and Safety in Digital Payments: An LLM-Powered Approach
Dahiphale, Devendra, Madiraju, Naveen, Lin, Justin, Karve, Rutvik, Agrawal, Monu, Modwal, Anant, Balakrishnan, Ramanan, Shah, Shanay, Kaushal, Govind, Mandawat, Priya, Hariramani, Prakash, Merchant, Arif
Digital payment systems have revolutionized financial transactions, offering unparalleled convenience and accessibility to users worldwide. However, the increasing popularity of these platforms has also attracted malicious actors seeking to exploit their vulnerabilities for financial gain. To address this challenge, robust and adaptable scam detection mechanisms are crucial for maintaining the trust and safety of digital payment ecosystems. This paper presents a comprehensive approach to scam detection, focusing on the Unified Payments Interface (UPI) in India, Google Pay (GPay) as a specific use case. The approach leverages Large Language Models (LLMs) to enhance scam classification accuracy and designs a digital assistant to aid human reviewers in identifying and mitigating fraudulent activities. The results demonstrate the potential of LLMs in augmenting existing machine learning models and improving the efficiency, accuracy, quality, and consistency of scam reviews, ultimately contributing to a safer and more secure digital payment landscape. Our evaluation of the Gemini Ultra model on curated transaction data showed a 93.33% accuracy in scam classification. Furthermore, the model demonstrated 89% accuracy in generating reasoning for these classifications. A promising fact, the model identified 32% new accurate reasons for suspected scams that human reviewers had not included in the review notes.
Instance Explainable Temporal Network For Multivariate Timeseries
Madiraju, Naveen, Karimabadi, Homa
Although deep networks have been widely adopted, one of their shortcomings has been their blackbox nature. One particularly difficult problem in machine learning is multivariate time series (MVTS) classification. MVTS data arise in many applications and are becoming ever more pervasive due to explosive growth of sensors and IoT devices. Here, we propose a novel network (IETNet) that identifies the important channels in the classification decision for each instance of inference. This feature also enables identification and removal of non-predictive variables which would otherwise lead to overfit and/or inaccurate model. IETNet is an end-to-end network that combines temporal feature extraction, variable selection, and joint variable interaction into a single learning framework. IETNet utilizes an 1D convolutions for temporal features, a novel channel gate layer for variable-class assignment using an attention layer to perform cross channel reasoning and perform classification objective. To gain insight into the learned temporal features and channels, we extract region of interest attention map along both time and channels. The viability of this network is demonstrated through a multivariate time series data from N body simulations and spacecraft sensor data.