Goto

Collaborating Authors

 Madeleine Udell



Causal Inference with Noisy and Missing Covariates via Matrix Factorization

Neural Information Processing Systems

Valid causal inference in observational studies often requires controlling for confounders. However, in practice measurements of confounders may be noisy, and can lead to biased estimates of causal effects. We show that we can reduce bias induced by measurement noise using a large number of noisy measurements of the underlying confounders. We propose the use of matrix factorization to infer the confounders from noisy covariates. This flexible and principled framework adapts to missing values, accommodates a wide variety of data types, and can enhance a wide variety of causal inference methods. We bound the error for the induced average treatment effect estimator and show it is consistent in a linear regression setting, using Exponential Family Matrix Completion preprocessing. We demonstrate the effectiveness of the proposed procedure in numerical experiments with both synthetic data and real clinical data.


Causal Inference with Noisy and Missing Covariates via Matrix Factorization

Neural Information Processing Systems

Valid causal inference in observational studies often requires controlling for confounders. However, in practice measurements of confounders may be noisy, and can lead to biased estimates of causal effects. We show that we can reduce bias induced by measurement noise using a large number of noisy measurements of the underlying confounders. We propose the use of matrix factorization to infer the confounders from noisy covariates. This flexible and principled framework adapts to missing values, accommodates a wide variety of data types, and can enhance a wide variety of causal inference methods. We bound the error for the induced average treatment effect estimator and show it is consistent in a linear regression setting, using Exponential Family Matrix Completion preprocessing. We demonstrate the effectiveness of the proposed procedure in numerical experiments with both synthetic data and real clinical data.



Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery

Neural Information Processing Systems

This paper develops a new class of nonconvex regularizers for low-rank matrix recovery. Many regularizers are motivated as convex relaxations of the matrix rank function. Our new factor group-sparse regularizers are motivated as a relaxation of the number of nonzero columns in a factorization of the matrix. These nonconvex regularizers are sharper than the nuclear norm; indeed, we show they are related to Schatten-p norms with arbitrarily small 0 < p 1. Moreover, these factor group-sparse regularizers can be written in a factored form that enables efficient and effective nonconvex optimization; notably, the method does not use singular value decomposition. We provide generalization error bounds for low-rank matrix completion which show improved upper bounds for Schatten-p norm reglarization as p decreases. Compared to the max norm and the factored formulation of the nuclear norm, factor group-sparse regularizers are more efficient, accurate, and robust to the initial guess of rank. Experiments show promising performance of factor group-sparse regularization for low-rank matrix completion and robust principal component analysis.


The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM

Neural Information Processing Systems

We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known rates of convergence -- among synchronous or asynchronous methods -- on this problem class. We provide upper bounds on the number of workers for which we can expect to see a linear speedup, which match the best bounds known for less complex problems, and show that in practice SAPALM achieves this linear speedup. We demonstrate state-of-the-art performance on several matrix factorization problems.


Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

Neural Information Processing Systems

Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the Nyström approximation with a novel mechanism for rank truncation. Theoretical analysis establishes that the proposed method can achieve any prescribed relative error in the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Computer experiments show that the proposed method dominates alternative techniques for fixed-rank psd matrix approximation across a wide range of examples.


Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

Neural Information Processing Systems

Several important applications, such as streaming PCA and semidefinite programming, involve a large-scale positive-semidefinite (psd) matrix that is presented as a sequence of linear updates. Because of storage limitations, it may only be possible to retain a sketch of the psd matrix. This paper develops a new algorithm for fixed-rank psd approximation from a sketch. The approach combines the Nyström approximation with a novel mechanism for rank truncation. Theoretical analysis establishes that the proposed method can achieve any prescribed relative error in the Schatten 1-norm and that it exploits the spectral decay of the input matrix. Computer experiments show that the proposed method dominates alternative techniques for fixed-rank psd matrix approximation across a wide range of examples.