Goto

Collaborating Authors

 Macháček, Dominik


How "Real" is Your Real-Time Simultaneous Speech-to-Text Translation System?

arXiv.org Artificial Intelligence

Simultaneous speech-to-text translation (SimulST) translates source-language speech into target-language text concurrently with the speaker's speech, ensuring low latency for better user comprehension. Despite its intended application to unbounded speech, most research has focused on human pre-segmented speech, simplifying the task and overlooking significant challenges. This narrow focus, coupled with widespread terminological inconsistencies, is limiting the applicability of research outcomes to real-world applications, ultimately hindering progress in the field. Our extensive literature review of 110 papers not only reveals these critical issues in current research but also serves as the foundation for our key contributions. We 1) define the steps and core components of a SimulST system, proposing a standardized terminology and taxonomy; 2) conduct a thorough analysis of community trends, and 3) offer concrete recommendations and future directions to bridge the gaps in existing literature, from evaluation frameworks to system architectures, for advancing the field towards more realistic and effective SimulST solutions.


Continuous Rating as Reliable Human Evaluation of Simultaneous Speech Translation

arXiv.org Artificial Intelligence

Simultaneous speech translation (SST) can be evaluated on simulated online events where human evaluators watch subtitled videos and continuously express their satisfaction by pressing buttons (so called Continuous Rating). Continuous Rating is easy to collect, but little is known about its reliability, or relation to comprehension of foreign language document by SST users. In this paper, we contrast Continuous Rating with factual questionnaires on judges with different levels of source language knowledge. Our results show that Continuous Rating is easy and reliable SST quality assessment if the judges have at least limited knowledge of the source language. Our study indicates users' preferences on subtitle layout and presentation style and, most importantly, provides a significant evidence that users with advanced source language knowledge prefer low latency over fewer re-translations.


Turning Whisper into Real-Time Transcription System

arXiv.org Artificial Intelligence

Whisper is one of the recent state-of-the-art multilingual speech recognition and translation models, however, it is not designed for real time transcription. In this paper, we build on top of Whisper and create Whisper-Streaming, an implementation of real-time speech transcription and translation of Whisper-like models. Whisper-Streaming uses local agreement policy with self-adaptive latency to enable streaming transcription. We show that Whisper-Streaming achieves high quality and 3.3 seconds latency on unsegmented long-form speech transcription test set, and we demonstrate its robustness and practical usability as a component in live transcription service at a multilingual conference.


MT Metrics Correlate with Human Ratings of Simultaneous Speech Translation

arXiv.org Artificial Intelligence

There have been several meta-evaluation studies on the correlation between human ratings and offline machine translation (MT) evaluation metrics such as BLEU, chrF2, BertScore and COMET. These metrics have been used to evaluate simultaneous speech translation (SST) but their correlations with human ratings of SST, which has been recently collected as Continuous Ratings (CR), are unclear. In this paper, we leverage the evaluations of candidate systems submitted to the English-German SST task at IWSLT 2022 and conduct an extensive correlation analysis of CR and the aforementioned metrics. Our study reveals that the offline metrics are well correlated with CR and can be reliably used for evaluating machine translation in simultaneous mode, with some limitations on the test set size. We conclude that given the current quality levels of SST, these metrics can be used as proxies for CR, alleviating the need for large scale human evaluation. Additionally, we observe that correlations of the metrics with translation as a reference is significantly higher than with simultaneous interpreting, and thus we recommend the former for reliable evaluation.


Robustness of Multi-Source MT to Transcription Errors

arXiv.org Artificial Intelligence

Automatic speech translation is sensitive to speech recognition errors, but in a multilingual scenario, the same content may be available in various languages via simultaneous interpreting, dubbing or subtitling. In this paper, we hypothesize that leveraging multiple sources will improve translation quality if the sources complement one another in terms of correct information they contain. To this end, we first show that on a 10-hour ESIC corpus, the ASR errors in the original English speech and its simultaneous interpreting into German and Czech are mutually independent. We then use two sources, English and German, in a multi-source setting for translation into Czech to establish its robustness to ASR errors. Furthermore, we observe this robustness when translating both noisy sources together in a simultaneous translation setting. Our results show that multi-source neural machine translation has the potential to be useful in a real-time simultaneous translation setting, thereby motivating further investigation in this area.