Goto

Collaborating Authors

 Maass, Wolfgang


RAG for Effective Supply Chain Security Questionnaire Automation

arXiv.org Artificial Intelligence

In an era where digital security is crucial, efficient processing of security-related inquiries through supply chain security questionnaires is imperative. This paper introduces a novel approach using Natural Language Processing (NLP) and Retrieval-Augmented Generation (RAG) to automate these responses. We developed QuestSecure, a system that interprets diverse document formats and generates precise responses by integrating large language models (LLMs) with an advanced retrieval system. Our experiments show that QuestSecure significantly improves response accuracy and operational efficiency. By employing advanced NLP techniques and tailored retrieval mechanisms, the system consistently produces contextually relevant and semantically rich responses, reducing cognitive load on security teams and minimizing potential errors. This research offers promising avenues for automating complex security management tasks, enhancing organizational security processes.


Incorporating Metabolic Information into LLMs for Anomaly Detection in Clinical Time-Series

arXiv.org Artificial Intelligence

Anomaly detection in clinical time-series holds significant potential in identifying suspicious patterns in different biological parameters. In this paper, we propose a targeted method that incorporates the clinical domain knowledge into LLMs to improve their ability to detect anomalies. We introduce the Metabolism Pathway-driven Prompting (MPP) method, which integrates the information about metabolic pathways to better capture the structural and temporal changes in biological samples. We applied our method for doping detection in sports, focusing on steroid metabolism, and evaluated using real-world data from athletes. The results show that our method improves anomaly detection performance by leveraging metabolic context, providing a more nuanced and accurate prediction of suspicious samples in athletes' profiles.


Pairing Conceptual Modeling with Machine Learning

arXiv.org Artificial Intelligence

Both conceptual modeling and machine learning have long been recognized as important areas of research. With the increasing emphasis on digitizing and processing large amounts of data for business and other applications, it would be helpful to consider how these areas of research can complement each other. To understand how they can be paired, we provide an overview of machine learning foundations and development cycle. We then examine how conceptual modeling can be applied to machine learning and propose a framework for incorporating conceptual modeling into data science projects. The framework is illustrated by applying it to a healthcare application. For the inverse pairing, machine learning can impact conceptual modeling through text and rule mining, as well as knowledge graphs. The pairing of conceptual modeling and machine learning in this this way should help lay the foundations for future research.


CCN GAC Workshop: Issues with learning in biological recurrent neural networks

arXiv.org Artificial Intelligence

This perspective piece came about through the Generative Adversarial Collaboration (GAC) series of workshops organized by the Computational Cognitive Neuroscience (CCN) conference in 2020. We brought together a number of experts from the field of theoretical neuroscience to debate emerging issues in our understanding of how learning is implemented in biological recurrent neural networks. Here, we will give a brief review of the common assumptions about biological learning and the corresponding findings from experimental neuroscience and contrast them with the efficiency of gradient-based learning in recurrent neural networks commonly used in artificial intelligence. We will then outline the key issues discussed in the workshop: synaptic plasticity, neural circuits, theory-experiment divide, and objective functions. Finally, we conclude with recommendations for both theoretical and experimental neuroscientists when designing new studies that could help to bring clarity to these issues.


Online Spatio-Temporal Learning in Deep Neural Networks

arXiv.org Machine Learning

Biological neural networks are equipped with an inherent capability to continuously adapt through online learning. This aspect remains in stark contrast to learning with error backpropagation through time (BPTT) applied to recurrent neural networks (RNNs), or recently to biologically-inspired spiking neural networks (SNNs). BPTT involves offline computation of the gradients due to the requirement to unroll the network through time. Online learning has recently regained the attention of the research community, focusing either on approaches that approximate BPTT or on biologically-plausible schemes applied to SNNs. Here we present an alternative perspective that is based on a clear separation of spatial and temporal gradient components. Combined with insights from biology, we derive from first principles a novel online learning algorithm for deep SNNs, called online spatio-temporal learning (OSTL). For shallow networks, OSTL is gradient-equivalent to BPTT enabling for the first time online training of SNNs with BPTT-equivalent gradients. In addition, the proposed formulation unveils a class of SNN architectures trainable online at low time complexity. Moreover, we extend OSTL to a generic form, applicable to a wide range of network architectures, including networks comprising long short-term memory (LSTM) and gated recurrent units (GRU). We demonstrate the operation of our algorithm on various tasks from language modelling to speech recognition and obtain results on par with the BPTT baselines. The proposed algorithm provides a framework for developing succinct and efficient online training approaches for SNNs and in general deep RNNs.


Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons

Neural Information Processing Systems

We analyze linear independence of rank one tensors produced by tensor powers of randomly perturbed vectors. This enables efficient decomposition of sums of high-order tensors. Our analysis builds upon [BCMV14] but allows for a wider range of perturbation models, including discrete ones. We give an application to recovering assemblies of neurons. Assemblies are large sets of neurons representing specific memories or concepts. The size of the intersection of two assemblies has been shown in experiments to represent the extent to which these memories co-occur or these concepts are related; the phenomenon is called association of assemblies. This suggests that an animal's memory is a complex web of associations, and poses the problem of recovering this representation from cognitive data. Motivated by this problem, we study the following more general question: Can we reconstruct the Venn diagram of a family of sets, given the sizes of their l-wise intersections? We show that as long as the family of sets is randomly perturbed, it is enough for the number of measurements to be polynomially larger than the number of nonempty regions of the Venn diagram to fully reconstruct the diagram.


Long short-term memory and Learning-to-learn in networks of spiking neurons

Neural Information Processing Systems

Recurrent networks of spiking neurons (RSNNs) underlie the astounding computing and learning capabilities of the brain. But computing and learning capabilities of RSNN models have remained poor, at least in comparison with ANNs. We address two possible reasons for that. One is that RSNNs in the brain are not randomly connected or designed according to simple rules, and they do not start learning as a tabula rasa network. Rather, RSNNs in the brain were optimized for their tasks through evolution, development, and prior experience. Details of these optimization processes are largely unknown. But their functional contribution can be approximated through powerful optimization methods, such as backpropagation through time (BPTT). A second major mismatch between RSNNs in the brain and models is that the latter only show a small fraction of the dynamics of neurons and synapses in the brain. We include neurons in our RSNN model that reproduce one prominent dynamical process of biological neurons that takes place at the behaviourally relevant time scale of seconds: neuronal adaptation. We denote these networks as LSNNs because of their Long short-term memory. The inclusion of adapting neurons drastically increases the computing and learning capability of RSNNs if they are trained and configured by deep learning (BPTT combined with a rewiring algorithm that optimizes the network architecture). In fact, the computational performance of these RSNNs approaches for the first time that of LSTM networks. In addition RSNNs with adapting neurons can acquire abstract knowledge from prior learning in a Learning-to-Learn (L2L) scheme, and transfer that knowledge in order to learn new but related tasks from very few examples. We demonstrate this for supervised learning and reinforcement learning.


Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons

Neural Information Processing Systems

We analyze linear independence of rank one tensors produced by tensor powers of randomly perturbed vectors. This enables efficient decomposition of sums of high-order tensors. Our analysis builds upon [BCMV14] but allows for a wider range of perturbation models, including discrete ones. We give an application to recovering assemblies of neurons. Assemblies are large sets of neurons representing specific memories or concepts. The size of the intersection of two assemblies has been shown in experiments to represent the extent to which these memories co-occur or these concepts are related; the phenomenon is called association of assemblies. This suggests that an animal's memory is a complex web of associations, and poses the problem of recovering this representation from cognitive data. Motivated by this problem, we study the following more general question: Can we reconstruct the Venn diagram of a family of sets, given the sizes of their l-wise intersections? We show that as long as the family of sets is randomly perturbed, it is enough for the number of measurements to be polynomially larger than the number of nonempty regions of the Venn diagram to fully reconstruct the diagram.


Long short-term memory and Learning-to-learn in networks of spiking neurons

Neural Information Processing Systems

Recurrent networks of spiking neurons (RSNNs) underlie the astounding computing and learning capabilities of the brain. But computing and learning capabilities of RSNN models have remained poor, at least in comparison with ANNs. We address two possible reasons for that. One is that RSNNs in the brain are not randomly connected or designed according to simple rules, and they do not start learning as a tabula rasa network. Rather, RSNNs in the brain were optimized for their tasks through evolution, development, and prior experience. Details of these optimization processes are largely unknown. But their functional contribution can be approximated through powerful optimization methods, such as backpropagation through time (BPTT). A second major mismatch between RSNNs in the brain and models is that the latter only show a small fraction of the dynamics of neurons and synapses in the brain. We include neurons in our RSNN model that reproduce one prominent dynamical process of biological neurons that takes place at the behaviourally relevant time scale of seconds: neuronal adaptation. We denote these networks as LSNNs because of their Long short-term memory. The inclusion of adapting neurons drastically increases the computing and learning capability of RSNNs if they are trained and configured by deep learning (BPTT combined with a rewiring algorithm that optimizes the network architecture). In fact, the computational performance of these RSNNs approaches for the first time that of LSTM networks. In addition RSNNs with adapting neurons can acquire abstract knowledge from prior learning in a Learning-to-Learn (L2L) scheme, and transfer that knowledge in order to learn new but related tasks from very few examples. We demonstrate this for supervised learning and reinforcement learning.


Deep Rewiring: Training very sparse deep networks

arXiv.org Machine Learning

Neuromorphic hardware tends to pose limits on the connectivity of deep networks that one can run on them. But also generic hardware and software implementations of deep learning run more efficiently for sparse networks. Several methods exist for pruning connections of a neural network after it was trained without connectivity constraints. We present an algorithm, DEEP R, that enables us to train directly a sparsely connected neural network. DEEP R automatically rewires the network during supervised training so that connections are there where they are most needed for the task, while its total number is all the time strictly bounded. We demonstrate that DEEP R can be used to train very sparse feedforward and recurrent neural networks on standard benchmark tasks with just a minor loss in performance. DEEP R is based on a rigorous theoretical foundation that views rewiring as stochastic sampling of network configurations from a posterior.