Ma, Zizhan
A Survey of LLM-based Agents in Medicine: How far are we from Baymax?
Wang, Wenxuan, Ma, Zizhan, Wang, Zheng, Wu, Chenghan, Chen, Wenting, Li, Xiang, Yuan, Yixuan
Large Language Models (LLMs) are transforming healthcare through the development of LLM-based agents that can understand, reason about, and assist with medical tasks. This survey provides a comprehensive review of LLM-based agents in medicine, examining their architectures, applications, and challenges. We analyze the key components of medical agent systems, including system profiles, clinical planning mechanisms, medical reasoning frameworks, and external capacity enhancement. The survey covers major application scenarios such as clinical decision support, medical documentation, training simulations, and healthcare service optimization. We discuss evaluation frameworks and metrics used to assess these agents' performance in healthcare settings. While LLM-based agents show promise in enhancing healthcare delivery, several challenges remain, including hallucination management, multimodal integration, implementation barriers, and ethical considerations. The survey concludes by highlighting future research directions, including advances in medical reasoning inspired by recent developments in LLM architectures, integration with physical systems, and improvements in training simulations. This work provides researchers and practitioners with a structured overview of the current state and future prospects of LLM-based agents in medicine.
Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking
Liu, Jie, Wang, Wenxuan, Ma, Zizhan, Huang, Guolin, SU, Yihang, Chang, Kao-Jung, Chen, Wenting, Li, Haoliang, Shen, Linlin, Lyu, Michael
Clinical decision making (CDM) is a complex, dynamic process crucial to healthcare delivery, yet it remains a significant challenge for artificial intelligence systems. While Large Language Model (LLM)-based agents have been tested on general medical knowledge using licensing exams and knowledge question-answering tasks, their performance in the CDM in real-world scenarios is limited due to the lack of comprehensive testing datasets that mirror actual medical practice. To address this gap, we present MedChain, a dataset of 12,163 clinical cases that covers five key stages of clinical workflow. MedChain distinguishes itself from existing benchmarks with three key features of real-world clinical practice: personalization, interactivity, and sequentiality. Further, to tackle real-world CDM challenges, we also propose MedChain-Agent, an AI system that integrates a feedback mechanism and a MCase-RAG module to learn from previous cases and adapt its responses. MedChain-Agent demonstrates remarkable adaptability in gathering information dynamically and handling sequential clinical tasks, significantly outperforming existing approaches. The relevant dataset and code will be released upon acceptance of this paper.