Ma, Yining
LLaMoCo: Instruction Tuning of Large Language Models for Optimization Code Generation
Ma, Zeyuan, Guo, Hongshu, Chen, Jiacheng, Peng, Guojun, Cao, Zhiguang, Ma, Yining, Gong, Yue-Jiao
Recent research explores optimization using large language models (LLMs) by either iteratively seeking next-step solutions from LLMs or directly prompting LLMs for an optimizer. However, these approaches exhibit inherent limitations, including low operational efficiency, high sensitivity to prompt design, and a lack of domain-specific knowledge. We introduce LLaMoCo, the first instruction-tuning framework designed to adapt LLMs for solving optimization problems in a code-to-code manner. Specifically, we establish a comprehensive instruction set containing well-described problem prompts and effective optimization codes. We then develop a novel two-phase learning strategy that incorporates a contrastive learning-based warm-up procedure before the instruction-tuning phase to enhance the convergence behavior during model fine-tuning. The experiment results demonstrate that a CodeGen (350M) model fine-tuned by our LLaMoCo achieves superior optimization performance compared to GPT-4 Turbo and the other competitors across both synthetic and realistic problem sets. The fine-tuned model and the usage instructions are available at https://anonymous.4open.science/r/LLaMoCo-722A.
Large Language Model with Graph Convolution for Recommendation
Du, Yingpeng, Wang, Ziyan, Sun, Zhu, Chua, Haoyan, Liu, Hongzhi, Wu, Zhonghai, Ma, Yining, Zhang, Jie, Sun, Youchen
In recent years, efforts have been made to use text information for better user profiling and item characterization in recommendations. However, text information can sometimes be of low quality, hindering its effectiveness for real-world applications. With knowledge and reasoning capabilities capsuled in Large Language Models (LLMs), utilizing LLMs emerges as a promising way for description improvement. However, existing ways of prompting LLMs with raw texts ignore structured knowledge of user-item interactions, which may lead to hallucination problems like inconsistent description generation. To this end, we propose a Graph-aware Convolutional LLM method to elicit LLMs to capture high-order relations in the user-item graph. To adapt text-based LLMs with structured graphs, We use the LLM as an aggregator in graph processing, allowing it to understand graph-based information step by step. Specifically, the LLM is required for description enhancement by exploring multi-hop neighbors layer by layer, thereby propagating information progressively in the graph. To enable LLMs to capture large-scale graph information, we break down the description task into smaller parts, which drastically reduces the context length of the token input with each step. Extensive experiments on three real-world datasets show that our method consistently outperforms state-of-the-art methods.
Symbol: Generating Flexible Black-Box Optimizers through Symbolic Equation Learning
Chen, Jiacheng, Ma, Zeyuan, Guo, Hongshu, Ma, Yining, Zhang, Jie, Gong, Yue-Jiao
Recent Meta-learning for Black-Box Optimization (MetaBBO) methods harness neural networks to meta-learn configurations of traditional black-box optimizers. Despite their success, they are inevitably restricted by the limitations of predefined hand-crafted optimizers. In this paper, we present \textsc{Symbol}, a novel framework that promotes the automated discovery of black-box optimizers through symbolic equation learning. Specifically, we propose a Symbolic Equation Generator (SEG) that allows closed-form optimization rules to be dynamically generated for specific tasks and optimization steps. Within \textsc{Symbol}, we then develop three distinct strategies based on reinforcement learning, so as to meta-learn the SEG efficiently. Extensive experiments reveal that the optimizers generated by \textsc{Symbol} not only surpass the state-of-the-art BBO and MetaBBO baselines, but also exhibit exceptional zero-shot generalization abilities across entirely unseen tasks with different problem dimensions, population sizes, and optimization horizons. Furthermore, we conduct in-depth analyses of our \textsc{Symbol} framework and the optimization rules that it generates, underscoring its desirable flexibility and interpretability.
Learning to Search Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt
Ma, Yining, Cao, Zhiguang, Chee, Yeow Meng
It learns to perform flexible k-opt exchanges based on a tailored action factorization method and a customized recurrent dual-stream decoder. As a pioneering work to circumvent the pure feasibility masking scheme and enable the autonomous exploration of both feasible and infeasible regions, we then propose the Guided Infeasible Region Exploration (GIRE) scheme, which supplements the NeuOpt policy network with feasibility-related features and leverages reward shaping to steer reinforcement learning more effectively. Additionally, we equip NeuOpt with Dynamic Data Augmentation (D2A) for more diverse searches during inference. Extensive experiments on the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that our NeuOpt not only significantly outstrips existing (masking-based) L2S solvers, but also showcases superiority over the learning-to-construct (L2C) and learning-to-predict (L2P) solvers. Notably, we offer fresh perspectives on how neural solvers can handle VRP constraints.
MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning
Ma, Zeyuan, Guo, Hongshu, Chen, Jiacheng, Li, Zhenrui, Peng, Guojun, Gong, Yue-Jiao, Ma, Yining, Cao, Zhiguang
Recently, Meta-Black-Box Optimization with Reinforcement Learning (MetaBBO-RL) has showcased the power of leveraging RL at the meta-level to mitigate manual fine-tuning of low-level black-box optimizers. However, this field is hindered by the lack of a unified benchmark. To fill this gap, we introduce MetaBox, the first benchmark platform expressly tailored for developing and evaluating MetaBBO-RL methods. MetaBox offers a flexible algorithmic template that allows users to effortlessly implement their unique designs within the platform. Moreover, it provides a broad spectrum of over 300 problem instances, collected from synthetic to realistic scenarios, and an extensive library of 19 baseline methods, including both traditional black-box optimizers and recent MetaBBO-RL methods. Besides, MetaBox introduces three standardized performance metrics, enabling a more thorough assessment of the methods. In a bid to illustrate the utility of MetaBox for facilitating rigorous evaluation and in-depth analysis, we carry out a wide-ranging benchmarking study on existing MetaBBO-RL methods. Our MetaBox is open-source and accessible at: https://github.com/GMC-DRL/MetaBox.
Neural Multi-Objective Combinatorial Optimization with Diversity Enhancement
Chen, Jinbiao, Zhang, Zizhen, Cao, Zhiguang, Wu, Yaoxin, Ma, Yining, Ye, Te, Wang, Jiahai
Most of existing neural methods for multi-objective combinatorial optimization (MOCO) problems solely rely on decomposition, which often leads to repetitive solutions for the respective subproblems, thus a limited Pareto set. Beyond decomposition, we propose a novel neural heuristic with diversity enhancement (NHDE) to produce more Pareto solutions from two perspectives. On the one hand, to hinder duplicated solutions for different subproblems, we propose an indicator-enhanced deep reinforcement learning method to guide the model, and design a heterogeneous graph attention mechanism to capture the relations between the instance graph and the Pareto front graph. On the other hand, to excavate more solutions in the neighborhood of each subproblem, we present a multiple Pareto optima strategy to sample and preserve desirable solutions. Experimental results on classic MOCO problems show that our NHDE is able to generate a Pareto front with higher diversity, thereby achieving superior overall performance. Moreover, our NHDE is generic and can be applied to different neural methods for MOCO.
Multi Agent Navigation in Unconstrained Environments using a Centralized Attention based Graphical Neural Network Controller
Ma, Yining, Khan, Qadeer, Cremers, Daniel
Abstract-- In this work, we propose a learning based neural model that provides both the longitudinal and lateral control commands to simultaneously navigate multiple vehicles. The goal is to ensure that each vehicle reaches a desired target state without colliding with any other vehicle or obstacle in an unconstrained environment. The model utilizes an attention based Graphical Neural Network paradigm that takes into consideration the state of all the surrounding vehicles to make an informed decision. This allows each vehicle to smoothly reach its destination while also evading collision with the other agents. The data and corresponding labels for training such a network is obtained using an optimization based procedure. Our method also outperforms comparable graphical neural network architectures. Meanwhile, the rectangles with broken boundaries represents the desired destination/target I. INTRODUCTION We would like to produce the Data driven approaches to senorimotor control have seen a sequence of control actions such that the five vehicles safely meteoric growth with the advent of deep learning in the last reach their destination state without colliding with each other decade [1], [2], [3], [4]. Powerful neural network architectures or the circled obstacle. These control actions are produced can now be trained and deployed in real-time applications by the Attention Based Graphical Neural Network (A-GNN).
Evolving Testing Scenario Generation Method and Intelligence Evaluation Framework for Automated Vehicles
Ma, Yining, Jiang, Wei, Zhang, Lingtong, Chen, Junyi, Wang, Hong, Lv, Chen, Wang, Xuesong, Xiong, Lu
Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method that utilizes deep reinforcement learning (DRL) to create human-like BVs for testing and intelligence evaluation of AVs. Firstly, a class of driver models with human-like competitive, cooperative, and mutual driving motivations is designed. Then, utilizing an improved "level-k" training procedure, the three distinct driver models acquire game-based interactive driving policies. And these models are assigned to BVs for generating evolving scenarios in which all BVs can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
FedHQL: Federated Heterogeneous Q-Learning
Fan, Flint Xiaofeng, Ma, Yining, Dai, Zhongxiang, Tan, Cheston, Low, Bryan Kian Hsiang, Wattenhofer, Roger
Federated Reinforcement Learning (FedRL) encourages distributed agents to learn collectively from each other's experience to improve their performance without exchanging their raw trajectories. The existing work on FedRL assumes that all participating agents are homogeneous, which requires all agents to share the same policy parameterization (e.g., network architectures and training configurations). However, in real-world applications, agents are often in disagreement about the architecture and the parameters, possibly also because of disparate computational budgets. Because homogeneity is not given in practice, we introduce the problem setting of Federated Reinforcement Learning with Heterogeneous And bLack-box agEnts (FedRL-HALE). We present the unique challenges this new setting poses and propose the Federated Heterogeneous Q-Learning (FedHQL) algorithm that principally addresses these challenges. We empirically demonstrate the efficacy of FedHQL in boosting the sample efficiency of heterogeneous agents with distinct policy parameterization using standard RL tasks.
Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation
Bi, Jieyi, Ma, Yining, Wang, Jiahai, Cao, Zhiguang, Chen, Jinbiao, Sun, Yuan, Chee, Yeow Meng
Recent neural methods for vehicle routing problems always train and test the deep models on the same instance distribution (i.e., uniform). To tackle the consequent cross-distribution generalization concerns, we bring the knowledge distillation to this field and propose an Adaptive Multi-Distribution Knowledge Distillation (AMDKD) scheme for learning more generalizable deep models. Particularly, our AMDKD leverages various knowledge from multiple teachers trained on exemplar distributions to yield a light-weight yet generalist student model. Meanwhile, we equip AMDKD with an adaptive strategy that allows the student to concentrate on difficult distributions, so as to absorb hard-to-master knowledge more effectively. Extensive experimental results show that, compared with the baseline neural methods, our AMDKD is able to achieve competitive results on both unseen in-distribution and out-of-distribution instances, which are either randomly synthesized or adopted from benchmark datasets (i.e., TSPLIB and CVRPLIB). Notably, our AMDKD is generic, and consumes less computational resources for inference.