Ma, Xiaojun
Extract Information from Hybrid Long Documents Leveraging LLMs: A Framework and Dataset
Yue, Chongjian, Xu, Xinrun, Ma, Xiaojun, Du, Lun, Ding, Zhiming, Han, Shi, Zhang, Dongmei, Zhang, Qi
Large Language Models (LLMs) demonstrate exceptional performance in textual understanding and tabular reasoning tasks. However, their ability to comprehend and analyze hybrid text, containing textual and tabular data, remains unexplored. The hybrid text often appears in the form of hybrid long documents (HLDs), which far exceed the token limit of LLMs. Consequently, we apply an Automated Information Extraction framework (AIE) to enable LLMs to process the HLDs and carry out experiments to analyse four important aspects of information extraction from HLDs. Given the findings: 1) The effective way to select and summarize the useful part of a HLD. 2) An easy table serialization way is enough for LLMs to understand tables. 3) The naive AIE has adaptability in many complex scenarios. 4) The useful prompt engineering to enhance LLMs on HLDs. To address the issue of dataset scarcity in HLDs and support future work, we also propose the Financial Reports Numerical Extraction (FINE) dataset. The dataset and code are publicly available in the attachments.
Text2Analysis: A Benchmark of Table Question Answering with Advanced Data Analysis and Unclear Queries
He, Xinyi, Zhou, Mengyu, Xu, Xinrun, Ma, Xiaojun, Ding, Rui, Du, Lun, Gao, Yan, Jia, Ran, Chen, Xu, Han, Shi, Yuan, Zejian, Zhang, Dongmei
Tabular data analysis is crucial in various fields, and large language models show promise in this area. However, current research mostly focuses on rudimentary tasks like Text2SQL and TableQA, neglecting advanced analysis like forecasting and chart generation. To address this gap, we developed the Text2Analysis benchmark, incorporating advanced analysis tasks that go beyond the SQL-compatible operations and require more in-depth analysis. We also develop five innovative and effective annotation methods, harnessing the capabilities of large language models to enhance data quality and quantity. Additionally, we include unclear queries that resemble real-world user questions to test how well models can understand and tackle such challenges. Finally, we collect 2249 query-result pairs with 347 tables. We evaluate five state-of-the-art models using three different metrics and the results show that our benchmark presents introduces considerable challenge in the field of tabular data analysis, paving the way for more advanced research opportunities.
On Manipulating Signals of User-Item Graph: A Jacobi Polynomial-based Graph Collaborative Filtering
Guo, Jiayan, Du, Lun, Chen, Xu, Ma, Xiaojun, Fu, Qiang, Han, Shi, Zhang, Dongmei, Zhang, Yan
Collaborative filtering (CF) is an important research direction in recommender systems that aims to make recommendations given the information on user-item interactions. Graph CF has attracted more and more attention in recent years due to its effectiveness in leveraging high-order information in the user-item bipartite graph for better recommendations. Specifically, recent studies show the success of graph neural networks (GNN) for CF is attributed to its low-pass filtering effects. However, current researches lack a study of how different signal components contributes to recommendations, and how to design strategies to properly use them well. To this end, from the view of spectral transformation, we analyze the important factors that a graph filter should consider to achieve better performance. Based on the discoveries, we design JGCF, an efficient and effective method for CF based on Jacobi polynomial bases and frequency decomposition strategies. Extensive experiments on four widely used public datasets show the effectiveness and efficiency of the proposed methods, which brings at most 27.06% performance gain on Alibaba-iFashion. Besides, the experimental results also show that JGCF is better at handling sparse datasets, which shows potential in making recommendations for cold-start users.
Leveraging LLMs for KPIs Retrieval from Hybrid Long-Document: A Comprehensive Framework and Dataset
Yue, Chongjian, Xu, Xinrun, Ma, Xiaojun, Du, Lun, Liu, Hengyu, Ding, Zhiming, Jiang, Yanbing, Han, Shi, Zhang, Dongmei
Large Language Models (LLMs) demonstrate exceptional performance in textual understanding and tabular reasoning tasks. However, their ability to comprehend and analyze hybrid text, containing textual and tabular data, remains underexplored. In this research, we specialize in harnessing the potential of LLMs to comprehend critical information from financial reports, which are hybrid long-documents. We propose an Automated Financial Information Extraction (AFIE) framework that enhances LLMs' ability to comprehend and extract information from financial reports. To evaluate AFIE, we develop a Financial Reports Numerical Extraction (FINE) dataset and conduct an extensive experimental analysis. Our framework is effectively validated on GPT-3.5 and GPT-4, yielding average accuracy increases of 53.94% and 33.77%, respectively, compared to a naive method. These results suggest that the AFIE framework offers accuracy for automated numerical extraction from complex, hybrid documents.
Hierarchical Transformer for Scalable Graph Learning
Zhu, Wenhao, Wen, Tianyu, Song, Guojie, Ma, Xiaojun, Wang, Liang
Graph Transformer is gaining increasing attention in the field of machine learning and has demonstrated state-of-the-art performance on benchmarks for graph representation learning. However, as current implementations of Graph Transformer primarily focus on learning representations of small-scale graphs, the quadratic complexity of the global self-attention mechanism presents a challenge for full-batch training when applied to larger graphs. Additionally, conventional sampling-based methods fail to capture necessary high-level contextual information, resulting in a significant loss of performance. In this paper, we introduce the Hierarchical Scalable Graph Transformer (HSGT) as a solution to these challenges. HSGT successfully scales the Transformer architecture to node representation learning tasks on large-scale graphs, while maintaining high performance. By utilizing graph hierarchies constructed through coarsening techniques, HSGT efficiently updates and stores multi-scale information in node embeddings at different levels. Together with sampling-based training methods, HSGT effectively captures and aggregates multi-level information on the hierarchical graph using only Transformer blocks. Empirical evaluations demonstrate that HSGT achieves state-of-the-art performance on large-scale benchmarks with graphs containing millions of nodes with high efficiency.
Homophily-oriented Heterogeneous Graph Rewiring
Guo, Jiayan, Du, Lun, Bi, Wendong, Fu, Qiang, Ma, Xiaojun, Chen, Xu, Han, Shi, Zhang, Dongmei, Zhang, Yan
With the rapid development of the World Wide Web (WWW), heterogeneous graphs (HG) have explosive growth. Recently, heterogeneous graph neural network (HGNN) has shown great potential in learning on HG. Current studies of HGNN mainly focus on some HGs with strong homophily properties (nodes connected by meta-path tend to have the same labels), while few discussions are made in those that are less homophilous. Recently, there have been many works on homogeneous graphs with heterophily. However, due to heterogeneity, it is non-trivial to extend their approach to deal with HGs with heterophily. In this work, based on empirical observations, we propose a meta-path-induced metric to measure the homophily degree of a HG. We also find that current HGNNs may have degenerated performance when handling HGs with less homophilous properties. Thus it is essential to increase the generalization ability of HGNNs on non-homophilous HGs. To this end, we propose HDHGR, a homophily-oriented deep heterogeneous graph rewiring approach that modifies the HG structure to increase the performance of HGNN. We theoretically verify HDHGR. In addition, experiments on real-world HGs demonstrate the effectiveness of HDHGR, which brings at most more than 10% relative gain.
EPNE: Evolutionary Pattern Preserving Network Embedding
Wang, Junshan, Jin, Yilun, Song, Guojie, Ma, Xiaojun
Information networks are ubiquitous and are ideal for modeling relational data. Networks being sparse and irregular, network embedding algorithms have caught the attention of many researchers, who came up with numerous embeddings algorithms in static networks. Yet in real life, networks constantly evolve over time. Hence, evolutionary patterns, namely how nodes develop itself over time, would serve as a powerful complement to static structures in embedding networks, on which relatively few works focus. In this paper, we propose EPNE, a temporal network embedding model preserving evolutionary patterns of the local structure of nodes. In particular, we analyze evolutionary patterns with and without periodicity and design strategies correspondingly to model such patterns in time-frequency domains based on causal convolutions. In addition, we propose a temporal objective function which is optimized simultaneously with proximity ones such that both temporal and structural information are preserved. With the adequate modeling of temporal information, our model is able to outperform other competitive methods in various prediction tasks.