Goto

Collaborating Authors

 Ma, Siwei


Unifying Generation and Compression: Ultra-low bitrate Image Coding Via Multi-stage Transformer

arXiv.org Artificial Intelligence

Recent progress in generative compression technology has significantly improved the perceptual quality of compressed data. However, these advancements primarily focus on producing high-frequency details, often overlooking the ability of generative models to capture the prior distribution of image content, thus impeding further bitrate reduction in extreme compression scenarios (<0.05 bpp). Motivated by the capabilities of predictive language models for lossless compression, this paper introduces a novel Unified Image Generation-Compression (UIGC) paradigm, merging the processes of generation and compression. A key feature of the UIGC framework is the adoption of vector-quantized (VQ) image models for tokenization, alongside a multi-stage transformer designed to exploit spatial contextual information for modeling the prior distribution. As such, the dual-purpose framework effectively utilizes the learned prior for entropy estimation and assists in the regeneration of lost tokens. Extensive experiments demonstrate the superiority of the proposed UIGC framework over existing codecs in perceptual quality and human perception, particularly in ultra-low bitrate scenarios (<=0.03 bpp), pioneering a new direction in generative compression.


Scalable Face Image Coding via StyleGAN Prior: Towards Compression for Human-Machine Collaborative Vision

arXiv.org Artificial Intelligence

The accelerated proliferation of visual content and the rapid development of machine vision technologies bring significant challenges in delivering visual data on a gigantic scale, which shall be effectively represented to satisfy both human and machine requirements. In this work, we investigate how hierarchical representations derived from the advanced generative prior facilitate constructing an efficient scalable coding paradigm for human-machine collaborative vision. Our key insight is that by exploiting the StyleGAN prior, we can learn three-layered representations encoding hierarchical semantics, which are elaborately designed into the basic, middle, and enhanced layers, supporting machine intelligence and human visual perception in a progressive fashion. With the aim of achieving efficient compression, we propose the layer-wise scalable entropy transformer to reduce the redundancy between layers. Based on the multi-task scalable rate-distortion objective, the proposed scheme is jointly optimized to achieve optimal machine analysis performance, human perception experience, and compression ratio. We validate the proposed paradigm's feasibility in face image compression. Extensive qualitative and quantitative experimental results demonstrate the superiority of the proposed paradigm over the latest compression standard Versatile Video Coding (VVC) in terms of both machine analysis as well as human perception at extremely low bitrates ($<0.01$ bpp), offering new insights for human-machine collaborative compression.


Machine Perception-Driven Image Compression: A Layered Generative Approach

arXiv.org Artificial Intelligence

In this age of information, images are a critical medium for storing and transmitting information. With the rapid growth of image data amount, visual compression and visual data perception are two important research topics attracting a lot attention. However, those two topics are rarely discussed together and follow separate research path. Due to the compact compressed domain representation offered by learning-based image compression methods, there exists possibility to have one stream targeting both efficient data storage and compression, and machine perception tasks. In this paper, we propose a layered generative image compression model achieving high human vision-oriented image reconstructed quality, even at extreme compression ratios. To obtain analysis efficiency and flexibility, a task-agnostic learning-based compression model is proposed, which effectively supports various compressed domain-based analytical tasks while reserves outstanding reconstructed perceptual quality, compared with traditional and learning-based codecs. In addition, joint optimization schedule is adopted to acquire best balance point among compression ratio, reconstructed image quality, and downstream perception performance. Experimental results verify that our proposed compressed domain-based multi-task analysis method can achieve comparable analysis results against the RGB image-based methods with up to 99.6% bit rate saving (i.e., compared with taking original RGB image as the analysis model input). The practical ability of our model is further justified from model size and information fidelity aspects.